-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathtrain_forecasting_autotcl_cost.py
executable file
·141 lines (118 loc) · 5.75 KB
/
train_forecasting_autotcl_cost.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
import numpy as np
import argparse
import time
import datetime
import data_load as datautils
from utils import init_dl_program,dict2class
from AutoTCL_CoST import AutoTCL
from models.augclass import *
from config import *
parser = argparse.ArgumentParser()
parser.add_argument('--dataset',type=str, default='WTH', help='The dataset name') # ETTh1,ETTh2,ETTm1,Elec, WTH,Lora
parser.add_argument('--load_default',type=bool, default=True, help='load default setting for dataset')
parser.add_argument('--archive', type=str, default='forecast_csv_univar', help='forecast_csv_univar or forecast_csv -->univar or multivar')
parser.add_argument('--gpu', type=int, default=2, help='The gpu no. used for training and inference')
parser.add_argument('--seed', type=int, default=42, help='seed')
parser.add_argument('--max_threads', type=int, default=12, help='threads')
parser.add_argument('--eval', type=bool, default=True, help='do eval')
parser.add_argument('--batch-size', type=int, default=8, help='The batch size')
parser.add_argument('--lr', type=float, default=0.0001, help='The embedding learning rate')
parser.add_argument('--meta_lr', type=float, default=0.012, help='The augmentation learning rate')
parser.add_argument('--mask_mode', type=str, default='mask_last', help='Do not use noise add model for embedding network')
parser.add_argument('--augmask_mode', type=str, default='mask_last', help='noise add model for argumentation network')
parser.add_argument('--repr_dims', type=int, default=320, help='The representation dimension')
parser.add_argument('--hidden_dims', type=int, default=64, help='The hidden dimension for embedding')
parser.add_argument('--aug_dim', type=int, default=16, help='The hidden dimension for argumentation')
parser.add_argument('--depth', type=int, default=10, help='Depths of embedding network')
parser.add_argument('--aug_depth', type=int, default=1, help='Depths of argumentation network')
parser.add_argument('--max_train_length', type=int, default=1024, help='The training length')
parser.add_argument('--iters', type=int, default=4000, help='The training iters')
parser.add_argument('--epochs', type=int, default=400, help='epochs')
parser.add_argument('--bias_init', type=float, default=0.0, help='')
parser.add_argument('--local_weight', type=float, default=0.72, help='The weight of local contrastive loss')
parser.add_argument('--reg_weight', type=float, default=0.2, help='The weight of H(x)')
parser.add_argument('--regular_weight', type=float, default=0.002, help='The weight of Regularization')
parser.add_argument('--dropout', type=float, default=0.1, help='Dropout of embedding network')
parser.add_argument('--augdropout', type=float, default=0.1, help='Dropout of argumentation network')
parser.add_argument('--ratio_step', type=int, default=1, help='M')
parser.add_argument('--gamma_zeta', type=float, default=0.005, help=' ')
parser.add_argument('--hard_mask', type=bool, default=True, help=' ')
parser.add_argument('--gumbel_bias', type=float, default=0.4, help=' ')
paras = parser.parse_args()
if paras.load_default:
params = merege_config(paras,paras.dataset,paras.archive=='forecast_csv_univar')
else:
params = paras
args = params # dict2class(**params)
# args = dict2class(**params)
device = init_dl_program(args.gpu, seed=args.seed, max_threads=None )
if args.dataset == "lora":
task_type = 'forecasting'
if args.archive == 'forecast_csv':
data, train_slice, valid_slice, test_slice, scaler, pred_lens, n_covariate_cols = datautils.load_forecast_csv_lora()
else:
data, train_slice, valid_slice, test_slice, scaler, pred_lens, n_covariate_cols = datautils.load_forecast_csv_lora(True)
train_data = data[:, train_slice]
elif args.archive == 'forecast_csv':
task_type = 'forecasting'
data, train_slice, valid_slice, test_slice, scaler, pred_lens, n_covariate_cols = datautils.load_forecast_csv(args.dataset)
train_data = data[:, train_slice]
elif args.archive == 'forecast_csv_univar':
task_type = 'forecasting'
data, train_slice, valid_slice, test_slice, scaler, pred_lens, n_covariate_cols = datautils.load_forecast_csv(args.dataset, univar=True)
train_data = data[:, train_slice]
valid_dataset = (data, train_slice, valid_slice, test_slice, scaler, pred_lens, n_covariate_cols)
if train_data.shape[0] == 1:
train_slice_number = int(train_data.shape[1] / args.max_train_length)
if train_slice_number < args.batch_size:
args.batch_size = train_slice_number
else:
if train_data.shape[0] < args.batch_size:
args.batch_size = train_data.shape[0]
config = dict(
batch_size=args.batch_size,
lr=args.lr,
meta_lr = args.meta_lr,
output_dims=args.repr_dims,
max_train_length=args.max_train_length,
input_dims=train_data.shape[-1],
device=device,
# depth = args.depth,
hidden_dims = args.hidden_dims,
# dropout = args.dropout,
# augdropout = args.augdropout,
# mask_mode = args.mask_mode,
augmask_mode = args.augmask_mode,
# bias_init = args.bias_init,
gamma_zeta = args.gamma_zeta,
aug_dim = args.aug_dim,
hard_mask = bool(args.hard_mask),
gumbel_bias = args.gumbel_bias
)
t = time.time()
print("model")
model = AutoTCL(
eval_every_epoch =10,
eval_start_epoch =10,
agu_channel = data.shape[-1],
**config
)
print("fit")
res = model.fit(train_data,
task_type = task_type,
n_epochs=args.epochs,
n_iters=args.iters,
miverbose=True,
valid_dataset = valid_dataset,
ratio_step= args.ratio_step,
lcoal_weight = args.local_weight,
reg_weight = args.reg_weight,
regular_weight = args.regular_weight,
evalall = True
)
mse, mae = res
mi_info = 'mse %.5f mae%.5f' % (mse[-1], mae[-1])
print(mi_info)
t = time.time() - t
print(f"\nTraining time: {datetime.timedelta(seconds=t)}\n")
print("Finished.")