-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathembeddings.py
22 lines (17 loc) · 994 Bytes
/
embeddings.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
from transformers import AutoTokenizer, AutoModel
import torch
tokenizer = AutoTokenizer.from_pretrained("sentence-transformers/all-MiniLM-L6-v2")
model = AutoModel.from_pretrained("sentence-transformers/all-MiniLM-L6-v2")
def generate_embeddings(texts):
# Tokenize the input texts
encoded_input = tokenizer(texts, padding=True, truncation=True, return_tensors='pt')
# Compute token embeddings
with torch.no_grad():
model_output = model(**encoded_input)
# Mean Pooling - Take attention mask into account for correct averaging
attention_mask = encoded_input['attention_mask']
input_mask_expanded = attention_mask.unsqueeze(-1).expand(model_output.last_hidden_state.size()).float()
sum_embeddings = torch.sum(model_output.last_hidden_state * input_mask_expanded, 1)
sum_mask = torch.clamp(input_mask_expanded.sum(1), min=1e-9)
embeddings = (sum_embeddings / sum_mask).squeeze()
return embeddings.tolist()