-
Notifications
You must be signed in to change notification settings - Fork 5
/
Copy pathexp.m
78 lines (69 loc) · 1.94 KB
/
exp.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
% path to project folder
addpath (genpath('C:\Users\Beheerder\Documents\Computational Neuroscience\Theoretical Foundations\ACO'))
reward=30;
iterations=50;
params=[1,1,1;0,1,1;1,1,0;1,40,1];
for i=1:size(params,1)
for j=1:5
[k2Progress,k2BestProgress,bestNet]= main(data(1:3000,:),params(i,:),0,0,reward,iterations);
k2(j)={k2Progress};
k2best(j)={k2BestProgress};
net(j)={bestNet};
end
Results{i}={k2,k2best,net};
end
for i=1:size(params,1)
for j=1:5
[k2Progress,k2BestProgress,bestNet]= main(data(1:3000,:),params(i,:),0,1,reward,iterations);
k2(j)={k2Progress};
k2best(j)={k2BestProgress};
net(j)={bestNet};
end
Results_elitist{i}={k2,k2best,net};
end
for i=1:size(params,1)
for j=1:5
[k2Progress,k2BestProgress,bestNet]= main(data(1:3000,:),params(i,:),1,reward,iterations);
k2(j)={k2Progress};
k2best(j)={k2BestProgress};
net(j)={bestNet};
end
Results_minmax{i}={k2,k2best,net};
end
for i=1:size(params,1)
for j=1:5
[k2Progress,k2BestProgress,bestNet]= main(data(1:3000,:),params(i,:),1,reward,iterations);
k2(j)={k2Progress};
k2best(j)={k2BestProgress};
net(j)={bestNet};
end
Results_elitist_minmax{i}={k2,k2best,net};
end
for j=1:4
for i=1:5
k2Max(i,j)= max(Results{j}{1}{i});
end
max_(j) = max(k2Max(:,j));
avg_(j) = mean(k2Max(:,j));
end
for j=1:4
for i=1:5
k2Max_elitist(i,j)= max(Results_elitist{j}{1}{i});
end
max_elitist(j)=max(k2Max_elitist(:,j));
avg_elitist(j) = mean(k2Max_elitist(:,j));
end
for j=1:4
for i=1:5
k2Max_minmax(i,j)= max(Results_minmax{j}{1}{i});
end
max_minmax(j)=max(k2Max_minmax(:,j));
avg_minmax(j) = mean(k2Max_minmax(:,j));
end
for j=1:4
for i=1:5
k2Max_elitist_minmax(i,j)= max(Results_elitist_minmax{j}{1}{i});
end
max_elitist_minmax(j)= max(k2Max_elitist_minmax(:,j));
avg_elitist_minmax(j) = mean(k2Max_elitist_minmax(:,j));
end