-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathutils.py
190 lines (132 loc) · 5.71 KB
/
utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
import numpy as np
import tensorflow as tf
import tensorflow_datasets as tfds
import matplotlib.pyplot as plt
from tqdm import tqdm
from typing import Tuple
from sklearn.metrics import ConfusionMatrixDisplay, accuracy_score, f1_score
from tensorflow.keras.utils import image_dataset_from_directory
def get_dataset(data_dir: str, batch_size: int=16,
image_size: Tuple[int, int]=(224, 224), shuffle: bool=True):
data = image_dataset_from_directory(data_dir,
image_size=image_size,
batch_size=batch_size,
shuffle=shuffle)
return data
def get_dataset_tfds(dataset: str="cifar10", split: str="train", download: bool=False):
ds = tfds.load(dataset, split=split, download=download, as_supervised=True)
return ds
def apply_gradient(optimizer: tf.keras.optimizers.Optimizer, loss_object: tf.keras.losses.Loss,
model: tf.keras.models.Model, x: tf.Tensor, y: tf.Tensor):
'''
applies the gradients to the trainable model weights
'''
with tf.GradientTape() as tape:
logits = model(x)
loss = loss_object(y, logits)
gradients = tape.gradient(loss, model.trainable_weights)
optimizer.apply_gradients(zip(gradients, model.trainable_weights))
return logits, loss
def epoch_train(train_dataset: tf.data.Dataset, optimizer: tf.keras.optimizers.Optimizer,
loss_object: tf.keras.losses.Loss, model: tf.keras.models.Model):
'''
Computes the train loss then updates the weights and metrics for one epoch.
'''
losses = []
train_acc_metric = tf.keras.metrics.SparseCategoricalAccuracy()
# Iterate through all batches of training data
for x, y in tqdm(train_dataset):
logits, loss_vals = apply_gradient(optimizer, loss_object, model, x, y)
losses.extend(loss_vals)
train_acc_metric.update_state(y, logits)
accuracy = train_acc_metric.result().numpy()
loss = tf.reduce_mean(losses).numpy()
return loss, accuracy
def epoch_val(val_dataset: tf.data.Dataset, loss_object: tf.keras.losses.Loss,
model: tf.keras.models.Model):
'''
Computes the validation loss and metrics for one epoch.
'''
losses = []
val_acc_metric = tf.keras.metrics.SparseCategoricalAccuracy()
for x, y in tqdm(val_dataset):
logits = model(x)
loss_vals = loss_object(y, logits)
losses.extend(loss_vals)
val_acc_metric.update_state(y, logits)
accuracy = val_acc_metric.result().numpy()
loss = tf.reduce_mean(losses).numpy()
return loss, accuracy
def train(model: tf.keras.models.Model, train_dataset: tf.data.Dataset, val_dataset: tf.data.Dataset,
optimizer: tf.keras.optimizers.Optimizer, loss_object: tf.keras.losses.Loss,epochs: int=10,):
train_losses, val_losses = [], []
train_accs, val_accs = [], []
for epoch in range(1, epochs+1):
train_loss, train_acc = epoch_train(train_dataset, optimizer, loss_object, model)
val_loss, val_acc = epoch_val(val_dataset, loss_object, model)
train_losses.append(train_loss)
val_losses.append(val_loss)
train_accs.append(train_acc)
val_accs.append(val_acc)
print(f"Epoch {epoch}/{epochs} - loss: {train_loss:.4f} val_loss: {val_loss:.4f}, accuracy: {train_acc:.4f} val_accuracy: {val_acc:.4f}")
train_losses, val_losses = tf.convert_to_tensor(train_losses).numpy(), tf.convert_to_tensor(val_losses).numpy()
train_accs, val_accs = tf.convert_to_tensor(train_accs).numpy(), tf.convert_to_tensor(val_accs).numpy()
result = {
"loss": {"train": train_losses, "val": val_losses},
"acc": {"train": train_accs, "val": val_accs}
}
return result
def predict(val_dataset: tf.data.Dataset, model: tf.keras.models.Model):
'''
predicts on a given dataset
'''
targets = []
outputs = []
for x, y in tqdm(val_dataset):
logits = model(x)
targets.extend(y)
outputs.extend(logits)
preds = tf.argmax(tf.convert_to_tensor(outputs), axis=1)
actual = tf.convert_to_tensor(targets, dtype="int64")
return actual.numpy(), preds.numpy()
def plot_metrics(results: dict):
fig = plt.figure(figsize=(12, 5))
ax = fig.add_subplot(121)
ax2 = fig.add_subplot(122)
losses = results["loss"]
accs = results["acc"]
x = range(1, len(losses["val"])+1)
ax.plot(x, losses["train"], label="train")
ax.plot(x, losses["val"], label="validation")
ax.set_ylabel("Loss")
ax.set_xlabel("Epoch")
ax.set_xticks(x)
ax.set_xlim(1, x[-1])
ax2.plot(x, accs["train"], label="train")
ax2.plot(x, accs["val"], label="validation")
ax2.set_ylabel("Accuracy")
ax2.set_xlabel("Epoch")
ax2.set_xticks(x)
ax2.set_xlim(1, x[-1])
ax.legend()
ax2.legend()
def plot_confusion_matrix(y_true: np.ndarray, y_pred: np.ndarray, labels: list=[0,1,2,3], title: str=''):
fig = plt.figure()
ax = fig.add_subplot(111)
acc = accuracy_score(y_true, y_pred)
f1 = f1_score(y_true, y_pred, average="weighted")
ConfusionMatrixDisplay.from_predictions(y_true, y_pred, ax=ax,
xticks_rotation=45, cmap="Blues")
if title == '':
title = f"Accuracy: {acc*100:.2f}%, F1: {f1*100:.2f}%"
plt.title(title)
ax.set_xticklabels(labels)
ax.set_yticklabels(labels)
plt.xlabel('Predicted')
plt.ylabel('True')
plt.show()
if __name__=="__main__":
a = [0, 1, 1, 0, 1, 2, 3, 2]
b = [0, 1, 1, 0, 0, 2, 3, 3]
classes = ['Blight', 'Common_Rust', 'Gray_Leaf_Spot', 'Healthy']
plot_confusion_matrix(a, b, labels=classes)