-
Notifications
You must be signed in to change notification settings - Fork 15
/
Copy pathsimclr_double_backbone.py
226 lines (186 loc) · 8.12 KB
/
simclr_double_backbone.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
import logging
import os
import sys
import wandb
import torch
import numpy as np
import torch.nn.functional as F
from torch.utils.tensorboard import SummaryWriter
from tqdm import tqdm
from simclr_utils import save_config_file, accuracy, save_checkpoint
torch.manual_seed(0)
class SimCLRDoubleBackbone(object):
def __init__(self, *args, **kwargs):
self.args = kwargs["args"]
self.model = kwargs["model"].to(self.args.device)
self.optimizer = kwargs["optimizer"]
self.scheduler = kwargs["scheduler"]
self.use_logging = self.args.use_logging
self.run_name = self.args.run_name
self.writer = SummaryWriter()
if self.use_logging:
logging.basicConfig(
filename=os.path.join(self.writer.log_dir, "training.log"),
level=logging.DEBUG,
)
self.criterion = torch.nn.CrossEntropyLoss().to(self.args.device)
def info_nce_loss(self, features):
labels = torch.cat(
[torch.arange(self.args.batch_size) for i in range(self.args.n_views)],
dim=0,
)
labels = (labels.unsqueeze(0) == labels.unsqueeze(1)).float()
labels = labels.to(self.args.device)
features = F.normalize(features, dim=1)
similarity_matrix = torch.matmul(features, features.T)
# assert similarity_matrix.shape == (
# self.args.n_views * self.args.batch_size, self.args.n_views * self.args.batch_size)
# assert similarity_matrix.shape == labels.shape
# discard the main diagonal from both: labels and similarities matrix
mask = torch.eye(labels.shape[0], dtype=torch.bool).to(self.args.device)
labels = labels[~mask].view(labels.shape[0], -1)
similarity_matrix = similarity_matrix[~mask].view(
similarity_matrix.shape[0], -1
)
# assert similarity_matrix.shape == labels.shape
# select and combine multiple positives
positives = similarity_matrix[labels.bool()].view(labels.shape[0], -1)
# select only the negatives the negatives
negatives = similarity_matrix[~labels.bool()].view(
similarity_matrix.shape[0], -1
)
logits = torch.cat([positives, negatives], dim=1)
labels = torch.zeros(logits.shape[0], dtype=torch.long).to(self.args.device)
logits = logits / self.args.temperature
return logits, labels
def train(self, train_loader):
# scaler = GradScaler(enabled=self.args.fp16_precision)
# save config file
save_config_file(self.writer.log_dir, self.args)
n_iter = 0
if self.use_logging:
logging.info(f"Start SimCLR training for {self.args.epochs} epochs.")
logging.info(f"Training with gpu: {self.args.disable_cuda}.")
acc1_per_logging = []
acc5_per_logging = []
loss_per_logging = []
for epoch_counter in range(self.args.epochs):
pbar = tqdm(train_loader)
for sample in pbar:
# s1 = sample["s1"] # use both Sentinel-1 channels
# s2 = sample["s2"][:, [4,3]] # use rg channels of Sentinel-2
if torch.isnan(sample["s1"]).any() or torch.isnan(sample["s2"]).any():
# some s1 scenes in sen12ms are known to have NaNs...
continue
s1 = sample["s1"].to(self.args.device)
s2 = sample["s2"].to(self.args.device)
# model processes s1 and s2 data through different backbones
images = {"s1": s1, "s2": s2}
# with autocast(enabled=self.args.fp16_precision):
feature_dict = self.model(images)
features = torch.cat([feature_dict["s1"], feature_dict["s2"]])
logits, labels = self.info_nce_loss(features)
loss = self.criterion(logits, labels)
if torch.isnan(loss):
print("Loss is nan:", loss)
return sample
self.optimizer.zero_grad()
loss.backward()
self.optimizer.step()
# scaler.scale(loss).backward()
# scaler.step(self.optimizer)
# scaler.update()
top1, top5 = accuracy(logits, labels, topk=(1, 5))
acc1_per_logging.append(top1[0].item())
acc5_per_logging.append(top5[0].item())
loss_per_logging.append(loss.item())
if n_iter % self.args.log_every_n_steps == 0:
# if n_iter == 0:
# continue
# top1, top5 = accuracy(logits, labels, topk=(1, 5))
mean_top1 = np.mean(acc1_per_logging)
mean_top5 = np.mean(acc5_per_logging)
mean_loss = np.mean(loss_per_logging)
if self.use_logging:
self.writer.add_scalar("loss", mean_loss, global_step=n_iter)
self.writer.add_scalar(
"acc/top1", mean_top1, global_step=n_iter
)
self.writer.add_scalar(
"acc/top5", mean_top5, global_step=n_iter
)
self.writer.add_scalar(
"learning_rate",
self.scheduler.get_lr()[0],
global_step=n_iter,
)
wandb.log(
{
"loss": mean_loss,
"acc/top1": mean_top1,
"acc/top5": mean_top5,
"learning_rate": self.scheduler.get_lr()[0],
"epoch": epoch_counter,
},
step=n_iter,
)
acc1_per_logging = []
acc5_per_logging = []
mean_loss = []
# n_iter += 1
n_iter += s1.shape[
0
] # count the number of processed samples (i.e. batch_size * steps)
pbar.set_description(
f"Epoch:{epoch_counter}, Step:{n_iter}, Loss:{np.mean(loss_per_logging[-100:]):.4}"
) # "{epoch_accuracy[-100:].mean():.4}")
if epoch_counter % 25 == 0:
print("Saving checkpoint for epoch:", epoch_counter)
checkpoint_name = (
"checkpoints/simclr-double-backbone-"
+ str(self.run_name)
+ "-epoch"
+ str(epoch_counter)
+ ".pth"
)
save_checkpoint(
{
"epoch": epoch_counter,
"arch": self.args.arch,
"state_dict": self.model.state_dict(),
"optimizer": self.optimizer.state_dict(),
},
is_best=False,
filename=checkpoint_name,
)
# warmup for the first 10 epochs
if epoch_counter >= 10:
self.scheduler.step()
if self.use_logging:
logging.debug(
f"Epoch: {epoch_counter}\tLoss: {loss}\tTop1 accuracy: {top1[0]}"
)
if self.use_logging:
logging.info("Training has finished.")
# save model checkpoints
checkpoint_name = (
"checkpoints/simclr-double-backbone-"
+ str(self.run_name)
+ "-epoch"
+ str(epoch_counter)
+ ".pth"
)
save_checkpoint(
{
"epoch": epoch_counter,
"arch": self.args.arch,
"state_dict": self.model.state_dict(),
"optimizer": self.optimizer.state_dict(),
},
is_best=False,
filename=checkpoint_name,
)
if self.use_logging:
logging.info(
f"Model checkpoint and metadata has been saved at {self.writer.log_dir}."
)