-
Notifications
You must be signed in to change notification settings - Fork 15
/
Copy pathvalidation_utils.py
182 lines (151 loc) · 6.68 KB
/
validation_utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
import os
# set environment variables to limit cpu usage
os.environ["OMP_NUM_THREADS"] = "4" # export OMP_NUM_THREADS=4
os.environ["OPENBLAS_NUM_THREADS"] = "4" # export OPENBLAS_NUM_THREADS=4
os.environ["MKL_NUM_THREADS"] = "6" # export MKL_NUM_THREADS=6
os.environ["VECLIB_MAXIMUM_THREADS"] = "4" # export VECLIB_MAXIMUM_THREADS=4
os.environ["NUMEXPR_NUM_THREADS"] = "6" # export NUMEXPR_NUM_THREADS=6
from tqdm import tqdm
import torch
import torch.nn.functional as F
from utils import get_dataset_similarities, get_rank_statistics
from metrics import ClasswiseAccuracy, ClasswiseMultilabelMetrics, PixelwiseMetrics
def validate_all(model, val_loader, criterion, device, config, model_name, target_name):
model.eval()
pbar = tqdm(val_loader)
# track performance
epoch_losses = torch.Tensor()
if target_name == "single-classification":
metrics = ClasswiseAccuracy(config.num_classes)
elif target_name == "multi-classification":
sigmoid = torch.nn.Sigmoid()
metrics = ClasswiseMultilabelMetrics(config.num_classes)
elif target_name == "pixel-classification":
metrics = PixelwiseMetrics(config.num_classes)
with torch.no_grad():
for idx, sample in enumerate(pbar):
if "x" in sample.keys():
if torch.isnan(sample["x"]).any():
# some s1 scenes are known to have NaNs...
continue
else:
if torch.isnan(sample["s1"]).any() or torch.isnan(sample["s2"]).any():
# some s1 scenes are known to have NaNs...
continue
if model_name == "baseline" or model_name == "swin-baseline":
s1 = sample["s1"]
s2 = sample["s2"]
if config.s1_input_channels == 0:
# no data fusion
img = s2.to(device)
elif config.s2_input_channels == 0:
img = s1.to(device)
else:
# data fusion
img = torch.cat([s1, s2], dim=1).to(device)
elif model_name == "normal-simclr":
x = sample["x"]
img = x.to(device)
elif model_name == "moby":
img = torch.cat([sample["s1"], sample["s2"]], dim=1).to(device)
elif model_name in [
"dual-baseline",
"dual-swin-baseline",
"alignment",
"simclr",
"swin-t",
"shared-swin-t",
"shared-swin-t-baseline",
]:
s1 = sample["s1"].to(device)
s2 = sample["s2"].to(device)
img = {"s1": s1, "s2": s2}
if target_name == "single-classification":
y = sample[config.target].long().to(device)
elif target_name == "multi-classification":
y = sample[config.target].to(device)
elif target_name == "pixel-classification":
y = sample[config.target].squeeze().type(torch.LongTensor).to(device)
y_hat = model(img)
if target_name == "multi-classification":
y_hat = sigmoid(y_hat)
loss = criterion(y_hat, y)
if target_name == "multi-classification":
pred = y_hat.round()
elif target_name == "single-classification":
_, pred = torch.max(y_hat, dim=1)
elif target_name == "pixel-classification":
probas = F.softmax(y_hat, dim=1)
pred = torch.argmax(probas, axis=1)
epoch_losses = torch.cat([epoch_losses, loss[None].detach().cpu()])
metrics.add_batch(y, pred)
pbar.set_description(f"Loss:{epoch_losses[-100:].mean():.4}")
mean_loss = epoch_losses.mean()
if target_name == "single-classification":
val_stats = {
"validation_loss": mean_loss.item(),
"validation_average_accuracy": metrics.get_average_accuracy(),
"validation_overall_accuracy": metrics.get_overall_accuracy(),
**{
"validation_accuracy_" + k: v
for k, v in metrics.get_classwise_accuracy().items()
},
}
elif target_name == "multi-classification":
val_stats = {
"validation_loss": mean_loss.item(),
"validation_average_f1": metrics.get_average_f1(),
"validation_overall_f1": metrics.get_overall_f1(),
"validation_average_recall": metrics.get_average_recall(),
"validation_overall_recall": metrics.get_overall_recall(),
"validation_average_precision": metrics.get_average_precision(),
"validation_overall_precision": metrics.get_overall_precision(),
**{
"validation_f1_" + k: v
for k, v in metrics.get_classwise_f1().items()
},
}
elif target_name == "pixel-classification":
val_stats = {
"validation_loss": mean_loss.item(),
"validation_average_accuracy": metrics.get_average_accuracy(),
**{
"validation_accuracy_" + k: v
for k, v in metrics.get_classwise_accuracy().items()
},
}
return val_stats
def validate_alignment_backbone(
model_s1, model_s2, dl, criterion, device, config, return_similarities=False
):
model_s1.eval()
model_s2.eval()
all_s1_ses = []
all_s2_ses = []
pbar = tqdm(dl)
# begin by encoding all scans
print("Encoding images")
for idx, sample in enumerate(pbar):
s1_img = sample["s1"].to(device)
s2_img = sample["s2"].to(device)
with torch.no_grad():
ses_s1 = model_s1(s1_img).cpu()
ses_s2 = model_s2(s2_img).cpu()
all_s1_ses.append(ses_s1)
all_s2_ses.append(ses_s2)
all_s1_ses = torch.cat(all_s1_ses)
num_scans, _, _, _ = all_s1_ses.size()
all_s2_ses = torch.cat(all_s2_ses)
# now correlate encodings
s1_b, s1_c, s1_h, s1_w = all_s1_ses.size()
all_s1_ses = all_s1_ses.to(device)
all_s2_ses = all_s2_ses.to(device)
print("Calculating encoding similarities + statistics")
similarities = get_dataset_similarities(all_s1_ses, all_s2_ses, device)
# corrs = (F.conv2d(all_dxa_ses, all_mri_ses)/(mri_h*mri_w)).view(num_scans,num_scans,-1)
rank_stats = get_rank_statistics(similarities)
rank_stats = {"validation_" + k: v for k, v in rank_stats.items()}
if not return_similarities:
return rank_stats
else:
return rank_stats, similarities