This repository was archived by the owner on Aug 20, 2019. It is now read-only.
-
Notifications
You must be signed in to change notification settings - Fork 5
/
Copy pathtest_slvs.py
248 lines (202 loc) · 8.28 KB
/
test_slvs.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
# -*- coding: utf-8 -*-
"""This module will test the functions of Python-Solvespace."""
__author__ = "Yuan Chang"
__copyright__ = "Copyright (C) 2016-2019"
__license__ = "AGPL"
__email__ = "pyslvs@gmail.com"
import unittest
from unittest import TestCase
from math import radians
from slvs import ResultFlag, SolverSystem, make_quaternion
class CoreTest(TestCase):
def test_crank_rocker(self):
"""Crank rocker example."""
sys = SolverSystem()
wp = sys.create_2d_base()
p0 = sys.add_point_2d(0, 0, wp)
sys.dragged(p0, wp)
p1 = sys.add_point_2d(90, 0, wp)
sys.dragged(p1, wp)
line0 = sys.add_line_2d(p0, p1, wp)
p2 = sys.add_point_2d(20, 20, wp)
p3 = sys.add_point_2d(0, 10, wp)
p4 = sys.add_point_2d(30, 20, wp)
sys.distance(p2, p3, 40, wp)
sys.distance(p2, p4, 40, wp)
sys.distance(p3, p4, 70, wp)
sys.distance(p0, p3, 35, wp)
sys.distance(p1, p4, 70, wp)
line1 = sys.add_line_2d(p0, p3, wp)
sys.angle(line0, line1, 45, wp)
result_flag = sys.solve()
self.assertEqual(result_flag, ResultFlag.OKAY)
x, y = sys.params(p2.params)
self.assertAlmostEqual(39.54852, x, 4)
self.assertAlmostEqual(61.91009, y, 4)
def test_involute(self):
"""Involute example."""
r = 10
angle = 45
sys = SolverSystem()
wp = sys.create_2d_base()
p0 = sys.add_point_2d(0, 0, wp)
sys.dragged(p0, wp)
p1 = sys.add_point_2d(0, 10, wp)
sys.distance(p0, p1, r, wp)
line0 = sys.add_line_2d(p0, p1, wp)
p2 = sys.add_point_2d(10, 10, wp)
line1 = sys.add_line_2d(p1, p2, wp)
sys.distance(p1, p2, r * radians(angle), wp)
sys.perpendicular(line0, line1, wp, False)
p3 = sys.add_point_2d(10, 0, wp)
sys.dragged(p3, wp)
line_base = sys.add_line_2d(p0, p3, wp)
sys.angle(line0, line_base, angle, wp)
result_flag = sys.solve()
self.assertEqual(result_flag, ResultFlag.OKAY)
x, y = sys.params(p2.params)
self.assertAlmostEqual(12.62467, x, 4)
self.assertAlmostEqual(1.51746, y, 4)
def test_jansen_linkage(self):
"""Jansen's linkage example."""
sys = SolverSystem()
wp = sys.create_2d_base()
p0 = sys.add_point_2d(0, 0, wp)
sys.dragged(p0, wp)
p1 = sys.add_point_2d(0, 20, wp)
sys.distance(p0, p1, 15, wp)
line0 = sys.add_line_2d(p0, p1, wp)
p2 = sys.add_point_2d(-38, -7.8, wp)
sys.dragged(p2, wp)
p3 = sys.add_point_2d(-50, 30, wp)
p4 = sys.add_point_2d(-70, -15, wp)
sys.distance(p2, p3, 41.5, wp)
sys.distance(p3, p4, 55.8, wp)
sys.distance(p2, p4, 40.1, wp)
p5 = sys.add_point_2d(-50, -50, wp)
p6 = sys.add_point_2d(-10, -90, wp)
p7 = sys.add_point_2d(-20, -40, wp)
sys.distance(p5, p6, 65.7, wp)
sys.distance(p6, p7, 49.0, wp)
sys.distance(p5, p7, 36.7, wp)
sys.distance(p1, p3, 50, wp)
sys.distance(p1, p7, 61.9, wp)
p8 = sys.add_point_2d(20, 0, wp)
line_base = sys.add_line_2d(p0, p8, wp)
sys.angle(line0, line_base, 45, wp)
result_flag = sys.solve()
self.assertEqual(result_flag, ResultFlag.OKAY)
x, y = sys.params(p2.params)
self.assertAlmostEqual(-38, x, 4)
self.assertAlmostEqual(-7.8, y, 4)
def test_nut_cracker(self):
"""Nut cracker example."""
h0 = 0.5
b0 = 0.75
r0 = 0.25
n1 = 1.5
n2 = 2.3
l0 = 3.25
sys = SolverSystem()
wp = sys.create_2d_base()
p0 = sys.add_point_2d(0, 0, wp)
sys.dragged(p0, wp)
p1 = sys.add_point_2d(2, 2, wp)
p2 = sys.add_point_2d(2, 0, wp)
line0 = sys.add_line_2d(p0, p2, wp)
sys.horizontal(line0, wp)
line1 = sys.add_line_2d(p1, p2, wp)
p3 = sys.add_point_2d(b0 / 2, h0, wp)
sys.dragged(p3, wp)
sys.distance(p3, line1, r0, wp)
sys.distance(p0, p1, n1, wp)
sys.distance(p1, p2, n2, wp)
result_flag = sys.solve()
self.assertEqual(result_flag, ResultFlag.OKAY)
x, _ = sys.params(p2.params)
ans_min = x - b0 / 2
ans_max = l0 - r0 - b0 / 2
self.assertAlmostEqual(1.01576, ans_min, 4)
self.assertAlmostEqual(2.625, ans_max, 4)
def test_pydemo(self):
"""
Some sample code for slvs.dll. We draw some geometric entities, provide
initial guesses for their positions, and then constrain them. The solver
calculates their new positions, in order to satisfy the constraints.
Copyright 2008-2013 Jonathan Westhues.
Copyright 2016-2017 Yuan Chang [pyslvs@gmail.com] Python-Solvespace bundled.
An example of a constraint in 2d. In our first group, we create a workplane
along the reference frame's xy plane. In a second group, we create some
entities in that group and dimension them.
"""
sys = SolverSystem()
sys.set_group(1)
# First, we create our workplane. Its origin corresponds to the origin
# of our base frame (x y z) = (0 0 0)
p101 = sys.add_point_3d(0, 0, 0)
# and it is parallel to the xy plane, so it has basis vectors (1 0 0)
# and (0 1 0).
qw, qx, qy, qz = make_quaternion(1, 0, 0, 0, 1, 0)
n102 = sys.add_normal_3d(qw, qx, qy, qz)
wp200 = sys.add_work_plane(p101, n102)
# Now create a second group. We'll solve group 2, while leaving group 1
# constant; so the workplane that we've created will be locked down,
# and the solver can't move it.
sys.set_group(2)
p301 = sys.add_point_2d(10, 20, wp200)
p302 = sys.add_point_2d(20, 10, wp200)
# And we create a line segment with those endpoints.
l400 = sys.add_line_2d(p301, p302, wp200)
# Now three more points.
p303 = sys.add_point_2d(100, 120, wp200)
p304 = sys.add_point_2d(120, 110, wp200)
p305 = sys.add_point_2d(115, 115, wp200)
# And arc, centered at point 303, starting at point 304, ending at
# point 305.
a401 = sys.add_arc(n102, p303, p304, p305, wp200)
# Now one more point, and a distance
p306 = sys.add_point_2d(200, 200, wp200)
d307 = sys.add_distance(30, wp200)
# And a complete circle, centered at point 306 with radius equal to
# distance 307. The normal is 102, the same as our workplane.
c402 = sys.add_circle(n102, p306, d307, wp200)
# The length of our line segment is 30.0 units.
sys.distance(p301, p302, 30, wp200)
# And the distance from our line segment to the origin is 10.0 units.
sys.distance(p101, l400, 10, wp200)
# And the line segment is vertical.
sys.vertical(l400, wp200)
# And the distance from one endpoint to the origin is 15.0 units.
sys.distance(p301, p101, 15, wp200)
# The arc and the circle have equal radius.
sys.equal(a401, c402, wp200)
# The arc has radius 17.0 units.
sys.diameter(a401, 17 * 2, wp200)
# If the solver fails, then ask it to report which constraints caused
# the problem.
# And solve.
result_flag = sys.solve()
self.assertEqual(result_flag, ResultFlag.OKAY)
x, y = sys.params(p301.params)
self.assertAlmostEqual(10, x, 4)
self.assertAlmostEqual(11.18030, y, 4)
x, y = sys.params(p302.params)
self.assertAlmostEqual(10, x, 4)
self.assertAlmostEqual(-18.81966, y, 4)
x, y = sys.params(p303.params)
self.assertAlmostEqual(101.11418, x, 4)
self.assertAlmostEqual(119.04153, y, 4)
x, y = sys.params(p304.params)
self.assertAlmostEqual(116.47661, x, 4)
self.assertAlmostEqual(111.76171, y, 4)
x, y = sys.params(p305.params)
self.assertAlmostEqual(117.40922, x, 4)
self.assertAlmostEqual(114.19676, y, 4)
x, y = sys.params(p306.params)
self.assertAlmostEqual(200, x, 4)
self.assertAlmostEqual(200, y, 4)
x, = sys.params(d307.params)
self.assertAlmostEqual(17, x, 4)
self.assertEqual(6, sys.dof())
if __name__ == '__main__':
unittest.main()