-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathsnakemake4_run_pystan.py
131 lines (100 loc) Β· 5.54 KB
/
snakemake4_run_pystan.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
import numpy as np
import pandas as pd
import pystan as ps
import statsmodels.formula.api as smf
import matplotlib.pyplot as plt
import plotly.express as px
import glob
import arviz
from tqdm import tqdm
import matplotlib
import os
import sys
import datetime
import io
import requests
# --output=%j.out
# snakemake -j 1 -s snakemake4_run_pystan.py --keep-going --rerun-incomplete -pn
# snakemake -j 100 -s snakemake4_run_pystan.py --keep-going --rerun-incomplete --latency-wait 50 --cluster "sbatch -A lpachter -t 500 -o ./logs/output.%a.pystan "
# snakemake -j 300 -s snakemake4_run_pystan.py --jobname "{jobid}.{wildcards.dataset_project_id}.{wildcards.dataset_sample_id}.pystan" --keep-going --rerun-incomplete --latency-wait 50 --cluster "sbatch -A lpachter -t 5000 --mem-per-cpu=20200 --output=./logs/snakemake4_run_pystan%j.logs"
url="https://docs.google.com/spreadsheets/d/"+ \
"1-2bLIns8r8VRoDenHVk-cQE9feNDnXJXnGZNm70ROrA"+\
"/export?gid="+\
"0" + \
"&format=csv"
metadatas=pd.read_csv(io.StringIO(requests.get(url).content.decode('utf-8')))
pystan_success_indicator_files = []
for dataset_sample_id in metadatas[metadatas['pystan']==1]['dataset_sample_id']:
dataset_project_id = metadatas[metadatas['dataset_sample_id']==dataset_sample_id]['dataset_project_id']
pystan_success_indicator_files.append('pystan_results/' + dataset_project_id + '-'+ dataset_sample_id + '-pystan_result_SUCCESS.txt')
rule all:
input:
pystan_success_indicator_files,
rule run_pystan:
input:
scvi_final_summary_file='scvi_final_summaries/{dataset_project_id}-{dataset_sample_id}-final_summary.csv',
output:
pystan_success_indicator_file ='pystan_results/{dataset_project_id}-{dataset_sample_id}-pystan_result_SUCCESS.txt',
params:
results_folder='./pystan_results/',
threads: 8
run:
ds = wildcards.dataset_sample_id
dataset = ds
project = wildcards.dataset_project_id
print(' π π π π π PYSTAN PROCESSING DATASET: ', ds, ' PROJECT: ', project, ' π π π π π ')
df = pd.read_csv(input.scvi_final_summary_file).sort_values(["sampled_cells", "total_UMIs"], ascending = (True, True))
stan_model = ps.StanModel(file="transformed_piecewise_stan_model.stan",
model_name = "transformed_piecewise_stan_model")
os.environ['STAN_NUM_THREADS'] = "10"
print(dataset)
begin = datetime.datetime.now()
print ("π§‘ π§‘ π§‘ π§‘ π§‘ Start fit time : π§‘ π§‘ π§‘ π§‘ π§‘ ")
print (begin.strftime("%Y-%m-%d %H:%M:%S"))
data_dict = {"ncells": df["sampled_cells"], "umis_per_cell": df["UMIs_per_cell"], "validation_error": df["validation_error"], "N": len(df)}
stan_fit = stan_model.sampling(data=data_dict,
iter=20000,
# warmup = 15000,
n_jobs=8,
chains=8,
thin=5, # I was getting problems with autocorrelation with thin=1...
refresh = 200,
verbose=True,
control={'adapt_delta':1, 'max_treedepth': 20},
)
# print(stan_model.model_code)
print ('π π π π π Finished ', project, '-', ds, ' fit time: π π π π π')
now = datetime.datetime.now()
print (now.strftime("%Y-%m-%d %H:%M:%S"))
print('Time taken:')
delta=now - begin
print(str(delta))
s = stan_fit.summary()
summary = pd.DataFrame(s['summary'], columns=s['summary_colnames'], index=s['summary_rownames'])
summary_head=pd.concat([summary.head(10),summary.iloc[-10:-1]]).copy()
print(summary_head)
arviz.plot_trace(stan_fit,['intercept',
'bp',
'bp_umis',
'before_variance',
'after_variance',
'cell_slope_before_destandardized',
'cell_slope_after_destandardized',
'umi_slope_before_destandardized',
'umi_slope_after_destandardized',
'umi_slope_before',
'umi_slope_after',
'cell_slope_before',
'cell_slope_after',
]
)
plt.savefig(params.results_folder + project + '-' + dataset + str(now.strftime("+%Y-%m-%d_%H:%M:%S")) +'.png',format='png',dpi=80)
full_stan_results = stan_fit.to_dataframe()
summary_text = str(summary_head.round(3))
extracted = stan_fit.extract()
full_stan_results.to_csv(params.results_folder + project + '-' + dataset + str(now.strftime("+%Y-%m-%d_%H:%M:%S+")) + 'pystan_result_full.csv')
summary.to_csv(params.results_folder + project + '-' + dataset + str(now.strftime("+%Y-%m-%d_%H:%M:%S+")) + 'pystan_result_summary.csv')
print ("Done! Current date and time : ")
print (now.strftime("%Y-%m-%d %H:%M:%S"))
print(' π π π π π PROCESSED: ', project, '-', ds, ' π π π π π ')
summary.to_csv(output.pystan_success_indicator_file)