-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain.py
89 lines (79 loc) · 3.01 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
import torch
import torch.distributed as dist
import numpy as np
import os
import argparse
import random
from config import cfg
from datasets import make_dataloader
from loss import make_loss
from model import make_model
from processor import do_train
from solver import make_optimizer, scheduler_factory as create_scheduler
from utils.logger import setup_logger
def set_seed(seed):
torch.manual_seed(seed)
torch.cuda.manual_seed(seed)
torch.cuda.manual_seed_all(seed)
np.random.seed(seed)
random.seed(seed)
torch.backends.cudnn.benchmark = False
torch.backends.cudnn.deterministic = True
os.environ['PYTHONHASHSEED'] = str(seed)
if __name__ == '__main__':
# parse input args from config file and command line
parser = argparse.ArgumentParser(description="ReID Baseline Training")
parser.add_argument(
"--config_file", default="", help="path to config file", type=str
)
parser.add_argument("opts", help="Modify config options using the command-line", default=None,
nargs=argparse.REMAINDER)
parser.add_argument("--local-rank", default=0, type=int)
args = parser.parse_args()
if args.config_file != "":
cfg.merge_from_file(args.config_file)
cfg.merge_from_list(args.opts)
cfg.freeze()
set_seed(cfg.SOLVER.SEED)
if cfg.MODEL.DIST_TRAIN:
torch.cuda.set_device(args.local_rank)
# setup logger
output_dir = cfg.OUTPUT_DIR
if output_dir and not os.path.exists(output_dir):
os.makedirs(output_dir, exist_ok=True)
if args.local_rank == 0:
logger = setup_logger("transreid", output_dir, if_train=True)
logger.info("Saving model in the path :{}".format(cfg.OUTPUT_DIR))
logger.info(args)
else:
logger = None
if logger and args.config_file != "":
logger.info("Loaded configuration file {}".format(args.config_file))
with open(args.config_file, 'r') as cf:
config_str = "\n" + cf.read()
logger.info(config_str)
if logger:
logger.info("Running with config:\n{}".format(cfg))
# init distributed training
if cfg.MODEL.DIST_TRAIN:
torch.distributed.init_process_group(backend='nccl', init_method='env://')
os.environ['CUDA_VISIBLE_DEVICES'] = cfg.MODEL.DEVICE_ID
# Prepare data loaders, model, loss function, optimizers, and scheduler
train_loader, train_loader_normal, val_loader, num_query, num_mode, num_classes, camera_num = make_dataloader(cfg)
model = make_model(cfg, num_mode, num_class=num_classes, camera_num=camera_num)
loss_func, center_criterion = make_loss(cfg, num_classes=num_classes)
optimizer, optimizer_center = make_optimizer(cfg, model, center_criterion)
scheduler = create_scheduler(cfg, optimizer)
# start training
do_train(
cfg,
model,
center_criterion,
train_loader,
val_loader,
optimizer,
optimizer_center,
scheduler,
loss_func,
num_query, args.local_rank, num_classes, camera_num
)