-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathapp.py
300 lines (267 loc) · 10.2 KB
/
app.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
#!/usr/bin/env python
#patch 0.01 ()
# Permission is hereby granted, free of charge, to any person obtaining a copy
# of this software and associated documentation files (the "Software"), to deal
# in the Software without restriction, including without limitation the rights
# to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
# copies of the Software, and to permit persons to whom the Software is
# furnished to do so, subject to the following conditions:
#
# ...
import json
import gradio as gr
import numpy as np
from PIL import Image
import spaces
import torch
from diffusers import StableDiffusionXLPipeline, EulerAncestralDiscreteScheduler
import os
import uuid
import random
# Description for the Gradio interface
DESCRIPTIONx = """## INSTANT WALLPAPER 🌅 """
# CSS for styling the Gradio interface
css = '''
.gradio-container{max-width: 575px !important}
h1{text-align:center}
footer {
visibility: hidden
}
'''
# Example prompts for the user to try
examples = [
"Illustration of A starry night camp in the mountains. Low-angle view, Minimal background, Geometric shapes theme, Pottery, Split-complementary colors, Bicolored light, UHD",
"Chocolate dripping from a donut against a yellow background, in the style of brocore, hyper-realistic oil --ar 2:3 --q 2 --s 750 --v 5 --ar 2:3 --q 2 --s 750 --v 5"
]
# Environment variables and defaults for configuration
MODEL_ID = os.getenv("MODEL_USED") #SG161222/RealVisXL_V4.0 / SG161222/Realistic_Vision_V5.1_noVAE / SG161222/RealVisXL_V4.0_Lightning (1/3)
MAX_IMAGE_SIZE = int(os.getenv("MAX_IMAGE_SIZE", "4096"))
USE_TORCH_COMPILE = os.getenv("USE_TORCH_COMPILE", "0") == "1"
ENABLE_CPU_OFFLOAD = os.getenv("ENABLE_CPU_OFFLOAD", "0") == "1"
BATCH_SIZE = int(os.getenv("BATCH_SIZE", "1"))
# Setting the device to GPU if available, otherwise CPU
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
# Loading the Stable Diffusion model
pipe = StableDiffusionXLPipeline.from_pretrained(
MODEL_ID,
torch_dtype=torch.float16 if torch.cuda.is_available() else torch.float32,
use_safetensors=True,
add_watermarker=False,
).to(device)
# Configuring the scheduler for the model
pipe.scheduler = EulerAncestralDiscreteScheduler.from_config(pipe.scheduler.config)
# Compiling the model for performance improvement if enabled
if USE_TORCH_COMPILE:
pipe.compile()
# Enabling CPU offload to save GPU memory if enabled
if ENABLE_CPU_OFFLOAD:
pipe.enable_model_cpu_offload()
# Maximum seed value for randomization
MAX_SEED = np.iinfo(np.int32).max
# Function to save the generated image
def save_image(img):
unique_name = str(uuid.uuid4()) + ".png"
img.save(unique_name)
return unique_name
# Function to randomize the seed if needed
def randomize_seed_fn(seed: int, randomize_seed: bool) -> int:
if randomize_seed:
seed = random.randint(0, MAX_SEED)
return seed
# Defining the main generation function with GPU acceleration
@spaces.GPU(duration=60, enable_queue=True)
def generate(
prompt: str,
negative_prompt: str = "",
use_negative_prompt: bool = False,
seed: int = 1,
width: int = 1024,
height: int = 1024,
guidance_scale: float = 3,
num_inference_steps: int = 25,
randomize_seed: bool = False,
use_resolution_binning: bool = True,
num_images: int = 1,
progress=gr.Progress(track_tqdm=True),
):
# Randomizing the seed if required
seed = int(randomize_seed_fn(seed, randomize_seed))
generator = torch.Generator(device=device).manual_seed(seed)
# Setting up the options for the image generation
options = {
"prompt": [prompt] * num_images,
"negative_prompt": [negative_prompt] * num_images if use_negative_prompt else None,
"width": width,
"height": height,
"guidance_scale": guidance_scale,
"num_inference_steps": num_inference_steps,
"generator": generator,
"output_type": "pil",
}
if use_resolution_binning:
options["use_resolution_binning"] = True
# Generating images in batches
images = []
for i in range(0, num_images, BATCH_SIZE):
batch_options = options.copy()
batch_options["prompt"] = options["prompt"][i:i+BATCH_SIZE]
if "negative_prompt" in batch_options:
batch_options["negative_prompt"] = options["negative_prompt"][i:i+BATCH_SIZE]
images.extend(pipe(**batch_options).images)
# Saving the generated images
image_paths = [save_image(img) for img in images]
return image_paths, seed
# Function to set the wallpaper size based on the selected option
def set_wallpaper_size(size):
if size == "phone":
return 1080, 1920
elif size == "desktop":
return 1920, 1080
return 1024, 1024
# Function to load predefined images for display
def load_predefined_images():
predefined_images = [
"assets/1.png",
"assets/2.png",
"assets/3.png",
"assets/4.png",
"assets/5.png",
"assets/6.png",
"assets/7.png",
"assets/8.png",
"assets/9.png",
]
return predefined_images
# Defining the Gradio interface with blocks
with gr.Blocks(css=css, theme="bethecloud/storj_theme") as demo:
gr.Markdown(DESCRIPTIONx)
with gr.Group():
with gr.Row():
prompt = gr.Text(
label="Prompt",
show_label=False,
max_lines=1,
placeholder="Enter your prompt",
container=False,
)
run_button = gr.Button("Run", scale=0)
result = gr.Gallery(label="Result", columns=1, show_label=False)
with gr.Group():
wallpaper_size = gr.Radio(
choices=["phone", "desktop", "custom"],
label="Wallpaper Size",
value="desktop"
)
width = gr.Slider(
label="Width",
minimum=512,
maximum=MAX_IMAGE_SIZE,
step=64,
value=1920,
visible=False,
)
height = gr.Slider(
label="Height",
minimum=512,
maximum=MAX_IMAGE_SIZE,
step=64,
value=1080,
visible=False,
)
# Changing the wallpaper size based on user selection
wallpaper_size.change(
fn=set_wallpaper_size,
inputs=wallpaper_size,
outputs=[width, height],
api_name="set_wallpaper_size"
)
# Advanced options for image generation
with gr.Accordion("Advanced options", open=False, visible=False):
num_images = gr.Slider(
label="Number of Images",
minimum=1,
maximum=4,
step=1,
value=1,
)
with gr.Row():
use_negative_prompt = gr.Checkbox(label="Use negative prompt", value=True)
negative_prompt = gr.Text(
label="Negative prompt",
max_lines=5,
lines=4,
placeholder="Enter a negative prompt",
value="(deformed, distorted, disfigured:1.3), poorly drawn, bad anatomy, wrong anatomy, extra limb, missing limb, floating limbs, (mutated hands and fingers:1.4), disconnected limbs, mutation, mutated, ugly, disgusting, blurry, amputation",
visible=True,
)
seed = gr.Slider(
label="Seed",
minimum=0,
maximum=MAX_SEED,
step=1,
value=0,
)
randomize_seed = gr.Checkbox(label="Randomize seed", value=True)
with gr.Row():
guidance_scale = gr.Slider(
label="Guidance Scale",
minimum=0.1,
maximum=6,
step=0.1,
value=3.0,
)
num_inference_steps = gr.Slider(
label="Number of inference steps",
minimum=1,
maximum=25,
step=1,
value=20,
)
# Adding examples for the user to try
gr.Examples(
examples=examples,
inputs=prompt,
cache_examples=False
)
# Changing the visibility of the negative prompt based on user selection
use_negative_prompt.change(
fn=lambda x: gr.update(visible=x),
inputs=use_negative_prompt,
outputs=negative_prompt,
api_name=False,
)
# Setting up the triggers and linking them to the generate function
gr.on(
triggers=[
prompt.submit,
negative_prompt.submit,
run_button.click,
],
fn=generate,
inputs=[
prompt,
negative_prompt,
use_negative_prompt,
seed,
width,
height,
guidance_scale,
num_inference_steps,
randomize_seed,
num_images
],
outputs=[result, seed],
api_name="run",
)
# Adding a predefined gallery section
gr.Markdown("### Generated Wallpapers")
predefined_gallery = gr.Gallery(label="Generated Images", columns=3, show_label=False, value=load_predefined_images())
# Adding a disclaimer
gr.Markdown("**Disclaimer:**")
gr.Markdown("This is the demo space for generating wallpapers using detailed prompts. This space works best for desktop-sized images (1920x1080). Reasonable quality images can be generated for mobile sizes (1080x1920), and custom images (1024x1024) can also be generated with better quality. Mobile settings may become disfigured. Try the sample prompts for generating higher quality images.<a href='https://huggingface.co/spaces/prithivMLmods/INSTANT-WALLPAPER/blob/main/sample_prompts.txt' target='_blank'>Try prompts</a>.")
# Adding a note about user responsibility
gr.Markdown("**Note:**")
gr.Markdown("⚠️ users are accountable for the content they generate and are responsible for ensuring it meets appropriate ethical standards.")
# Launching the Gradio interface
if __name__ == "__main__":
demo.queue(max_size=40).launch()