-
Notifications
You must be signed in to change notification settings - Fork 837
/
Copy pathseldon_client.py
2265 lines (2121 loc) · 70.5 KB
/
seldon_client.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
import http.client as http_client
import json
import logging
from typing import Dict, Iterable, List, Optional, Tuple, Union
import grpc
import numpy as np
import requests
from google.protobuf import any_pb2, json_format
from seldon_core.proto import prediction_pb2, prediction_pb2_grpc
from seldon_core.utils import (
array_to_grpc_datadef,
feedback_to_json,
json_to_feedback,
json_to_seldon_message,
seldon_message_to_json,
seldon_messages_to_json,
)
logger = logging.getLogger(__name__)
class SeldonClientException(Exception):
"""
Seldon Client Exception
"""
status_code = 400
def __init__(self, message):
Exception.__init__(self)
self.message = message
class SeldonChannelCredentials:
"""
Channel credentials.
Presently just denotes an SSL connection.
For GRPC in order to be properly implemented, you need to provide *either*
the root_certificate_files, *or* all the file paths.
The verify attribute currently is used to avoid SSL verification in REST
however for GRPC it is recommended that you provide a path at least for the
root_certificates_file otherwise it may not work as expected.
"""
def __init__(
self,
verify: bool = True,
root_certificates_file: str = None,
private_key_file: str = None,
certificate_chain_file: str = None,
):
self.verify = verify
self.root_certificates_file = root_certificates_file
self.private_key_file = private_key_file
self.certificate_chain_file = certificate_chain_file
class SeldonCallCredentials:
"""
Credentials for each call, currently implements the ability to provide
an OAuth token which is currently made available through REST via
the X-Auth-Token header, and via GRPC via the metadata call creds.
"""
def __init__(self, token: str = None):
self.token = token
class SeldonClientPrediction:
"""
Data class to return from Seldon Client
"""
def __init__(
self,
request: Optional[Union[prediction_pb2.SeldonMessage, Dict]],
response: Optional[Union[prediction_pb2.SeldonMessage, Dict]],
success: bool = True,
msg: str = "",
):
self.request = request
self.response = response
self.success = success
self.msg = msg
def __repr__(self):
return "Success:%s message:%s\nRequest:\n%s\nResponse:\n%s" % (
self.success,
self.msg,
self.request,
self.response,
)
class SeldonClientFeedback:
"""
Data class to return from Seldon Client for feedback calls
"""
def __init__(
self,
request: Optional[prediction_pb2.Feedback],
response: Optional[Union[prediction_pb2.SeldonMessage, Dict]],
success: bool = True,
msg: str = "",
):
self.request = request
self.response = response
self.success = success
self.msg = msg
def __repr__(self):
return "Success:%s message:%s\nRequest:\n%s\nResponse:\n%s" % (
self.success,
self.msg,
self.request,
self.response,
)
class SeldonClientCombine:
"""
Data class to return from Seldon Client for aggregate calls
"""
def __init__(
self,
request: Optional[prediction_pb2.SeldonMessageList],
response: Optional[prediction_pb2.SeldonMessage],
success: bool = True,
msg: str = "",
):
self.request = request
self.response = response
self.success = success
self.msg = msg
def __repr__(self):
return "Success:%s message:%s\nRequest:\n%s\nResponse:\n%s" % (
self.success,
self.msg,
self.request,
self.response,
)
class SeldonClient:
"""
A reference Seldon API Client
"""
def __init__(
self,
gateway: str = "ambassador",
transport: str = "rest",
namespace: str = None,
deployment_name: str = None,
payload_type: str = "tensor",
gateway_endpoint: str = "localhost:8003",
microservice_endpoint: str = "localhost:5000",
grpc_max_send_message_length: int = 4 * 1024 * 1024,
grpc_max_receive_message_length: int = 4 * 1024 * 1024,
channel_credentials: SeldonChannelCredentials = None,
call_credentials: SeldonCallCredentials = None,
debug: bool = False,
client_return_type: str = "dict",
ssl: bool = None,
):
"""
Parameters
----------
gateway
API Gateway - either ambassador, istio or seldon
transport
API transport - grpc or rest
namespace
k8s namespace of running deployment
deployment_name
name of seldon deployment
payload_type
type of payload - tensor, ndarray or tftensor
gateway_endpoint
Gateway endpoint
microservice_endpoint
Running microservice endpoint
grpc_max_send_message_length
Max grpc send message size in bytes
grpc_max_receive_message_length
Max grpc receive message size in bytes
client_return_type
the return type of all functions can be either dict or proto
"""
if debug:
logger.setLevel(logging.DEBUG)
http_client.HTTPConnection.debuglevel = 1
self.config = locals().copy()
del self.config["self"]
logger.debug("Configuration:" + str(self.config))
def _gather_args(self, **kwargs):
c2 = {**self.config}
c2.update({k: v for k, v in kwargs.items() if v is not None})
return c2
def _validate_args(
self,
gateway: str = None,
transport: str = None,
method: str = None,
data: np.ndarray = None,
client_return_type: str = "dict",
**kwargs,
):
"""
Internal method to validate parameters
Parameters
----------
gateway
API gateway
transport
API transport
method
The method to call
data
Numpy data to send
kwargs
Returns
-------
"""
if not (gateway == "ambassador" or gateway == "seldon" or gateway == "istio"):
raise SeldonClientException(
"Valid values for gateway are 'ambassador', 'istio', or 'seldon'"
)
if not (transport == "rest" or transport == "grpc"):
raise SeldonClientException(
"Valid values for transport are 'rest' or 'grpc'"
)
if not (
method == "predict"
or method == "route"
or method == "aggregate"
or method == "transform-input"
or method == "transform-output"
or method == "send-feedback"
or method is None
):
raise SeldonClientException(
"Valid values for method are 'predict', 'route', 'transform-input', 'transform-output', 'aggregate' or None"
)
if not (data is None or isinstance(data, np.ndarray)):
raise SeldonClientException("Valid values for data are None or numpy array")
if not (client_return_type == "proto" or client_return_type == "dict"):
raise SeldonClientException(
"Valid values for client_return_type are proto or dict"
)
def predict(
self,
gateway: str = None,
transport: str = None,
deployment_name: str = None,
payload_type: str = None,
gateway_endpoint: str = None,
microservice_endpoint: str = None,
method: str = None,
shape: Tuple = (1, 1),
namespace: str = None,
data: np.ndarray = None,
bin_data: Union[bytes, bytearray] = None,
str_data: str = None,
json_data: Union[str, List, Dict] = None,
custom_data: any_pb2.Any = None,
names: Iterable[str] = None,
gateway_prefix: str = None,
headers: Dict = None,
http_path: str = None,
meta: Dict = None,
client_return_type: str = None,
raw_data: Dict = None,
ssl: bool = None,
) -> SeldonClientPrediction:
"""
Parameters
----------
gateway
API Gateway - either ambassador, istio or seldon
transport
API transport - grpc or rest
namespace
k8s namespace of running deployment
deployment_name
name of seldon deployment
payload_type
type of payload - tensor, ndarray or tftensor
gateway_endpoint
Gateway endpoint
microservice_endpoint
Running microservice endpoint
grpc_max_send_message_length
Max grpc send message size in bytes
grpc_max_receive_message_length
Max grpc receive message size in bytes
data
Numpy Array Payload to send
bin_data
Binary payload to send - will override data
str_data
String payload to send - will override data
json_data
JSON payload to send - will override data
custom_data
Custom payload to send - will override data
names
Column names
gateway_prefix
prefix path for gateway URL endpoint
headers
Headers to add to request
http_path:
Custom http path for predict call to use
meta:
Custom meta map, supplied as tags
client_return_type
the return type of all functions can be either dict or proto
raw_data
Raw payload, a dictionary representing the json request or the raw grpc proto
Returns
-------
"""
k = self._gather_args(
gateway=gateway,
transport=transport,
deployment_name=deployment_name,
payload_type=payload_type,
gateway_endpoint=gateway_endpoint,
microservice_endpoint=microservice_endpoint,
method=method,
shape=shape,
namespace=namespace,
names=names,
data=data,
bin_data=bin_data,
str_data=str_data,
json_data=json_data,
custom_data=custom_data,
gateway_prefix=gateway_prefix,
headers=headers,
http_path=http_path,
meta=meta,
client_return_type=client_return_type,
raw_data=raw_data,
ssl=ssl,
)
self._validate_args(**k)
if k["gateway"] == "ambassador" or k["gateway"] == "istio":
if k["transport"] == "rest":
return rest_predict_gateway(**k)
elif k["transport"] == "grpc":
return grpc_predict_gateway(**k)
else:
raise SeldonClientException("Unknown transport " + k["transport"])
elif k["gateway"] == "seldon":
if k["transport"] == "rest":
return rest_predict_seldon(**k)
elif k["transport"] == "grpc":
return grpc_predict_seldon(**k)
else:
raise SeldonClientException("Unknown transport " + k["transport"])
else:
raise SeldonClientException("Unknown gateway " + k["gateway"])
def feedback(
self,
prediction_request: prediction_pb2.SeldonMessage = None,
prediction_response: prediction_pb2.SeldonMessage = None,
prediction_truth: prediction_pb2.SeldonMessage = None,
reward: float = 0,
gateway: str = None,
transport: str = None,
deployment_name: str = None,
payload_type: str = None,
gateway_endpoint: str = None,
microservice_endpoint: str = None,
method: str = None,
shape: Tuple = (1, 1),
namespace: str = None,
gateway_prefix: str = None,
client_return_type: str = None,
raw_request: dict = None,
ssl: bool = None,
) -> SeldonClientFeedback:
"""
Parameters
----------
prediction_request
Previous prediction request
prediction_response
Previous prediction response
reward
A reward to send in feedback
gateway
API Gateway - either ambassador, istio or seldon
transport
API transport - grpc or rest
deployment_name
name of seldon deployment
payload_type
payload - tensor, ndarray or tftensor
gateway_endpoint
Gateway endpoint
microservice_endpoint
Running microservice endpoint
grpc_max_send_message_length
Max grpc send message size in bytes
grpc_max_receive_message_length
Max grpc receive message size in bytes
method
The microservice method to call
shape
The shape of the data to send
namespace
k8s namespace of running deployment
client_return_type
the return type of all functions can be either dict or proto
Returns
-------
"""
k = self._gather_args(
gateway=gateway,
transport=transport,
deployment_name=deployment_name,
payload_type=payload_type,
gateway_endpoint=gateway_endpoint,
microservice_endpoint=microservice_endpoint,
method=method,
shape=shape,
namespace=namespace,
gateway_prefix=gateway_prefix,
client_return_type=client_return_type,
raw_request=raw_request,
ssl=ssl,
)
self._validate_args(**k)
if k["gateway"] == "ambassador" or k["gateway"] == "istio":
if k["transport"] == "rest":
return rest_feedback_gateway(
prediction_request,
prediction_response,
prediction_truth,
reward,
**k,
)
elif k["transport"] == "grpc":
return grpc_feedback_gateway(
prediction_request,
prediction_response,
prediction_truth,
reward,
**k,
)
else:
raise SeldonClientException("Unknown transport " + k["transport"])
elif k["gateway"] == "seldon":
if k["transport"] == "rest":
return rest_feedback_seldon(
prediction_request,
prediction_response,
prediction_truth,
reward,
**k,
)
elif k["transport"] == "grpc":
return grpc_feedback_seldon(
prediction_request,
prediction_response,
prediction_truth,
reward,
**k,
)
else:
raise SeldonClientException("Unknown transport " + k["transport"])
else:
raise SeldonClientException("Unknown gateway " + k["gateway"])
def explain(
self,
gateway: str = None,
transport: str = None,
deployment_name: str = None,
payload_type: str = None,
gateway_endpoint: str = None,
shape: Tuple = (1, 1),
namespace: str = None,
data: np.ndarray = None,
bin_data: Union[bytes, bytearray] = None,
str_data: str = None,
json_data: str = None,
names: Iterable[str] = None,
gateway_prefix: str = None,
headers: Dict = None,
http_path: str = None,
client_return_type: str = None,
predictor: str = None,
ssl: bool = None,
) -> Dict:
"""
Parameters
----------
gateway
API Gateway - either ambassador, istio or seldon
transport
API transport - grpc or rest
namespace
k8s namespace of running deployment
deployment_name
name of seldon deployment
payload_type
type of payload - tensor, ndarray or tftensor
gateway_endpoint
Gateway endpoint
microservice_endpoint
Running microservice endpoint
grpc_max_send_message_length
Max grpc send message size in bytes
grpc_max_receive_message_length
Max grpc receive message size in bytes
data
Numpy Array Payload to send
bin_data
Binary payload to send - will override data
str_data
String payload to send - will override data
json_data
JSON payload to send - will override data
names
Column names
gateway_prefix
prefix path for gateway URL endpoint
headers
Headers to add to request
http_path:
Custom http path for predict call to use
client_return_type
the return type of all functions can be either dict or proto
predictor
The name of the predictor to send the explanations to
Returns
-------
"""
k = self._gather_args(
gateway=gateway,
transport=transport,
deployment_name=deployment_name,
payload_type=payload_type,
gateway_endpoint=gateway_endpoint,
shape=shape,
namespace=namespace,
names=names,
data=data,
bin_data=bin_data,
str_data=str_data,
json_data=json_data,
gateway_prefix=gateway_prefix,
headers=headers,
http_path=http_path,
client_return_type=client_return_type,
predictor=predictor,
ssl=ssl,
)
self._validate_args(**k)
if k["gateway"] == "ambassador" or k["gateway"] == "istio":
if k["transport"] == "rest":
return explain_predict_gateway(**k)
elif k["transport"] == "grpc":
raise SeldonClientException("gRPC not supported for explain")
else:
raise SeldonClientException("Unknown transport " + k["transport"])
else:
raise SeldonClientException("Unknown gateway " + k["gateway"])
def microservice(
self,
gateway: str = None,
transport: str = None,
deployment_name: str = None,
payload_type: str = None,
gateway_endpoint: str = None,
microservice_endpoint: str = None,
method: str = None,
shape: Tuple = (1, 1),
namespace: str = None,
data: np.ndarray = None,
datas: List[np.ndarray] = None,
ndatas: int = None,
bin_data: Union[bytes, bytearray] = None,
str_data: str = None,
json_data: Union[str, List, Dict] = None,
custom_data: any_pb2.Any = None,
names: Iterable[str] = None,
) -> Union[SeldonClientPrediction, SeldonClientCombine]:
"""
Parameters
----------
gateway
API Gateway - either ambassador, istio or seldon
transport
API transport - grpc or rest
deployment_name
name of seldon deployment
payload_type
payload - tensor, ndarray or tftensor
gateway_endpoint
Gateway endpoint
microservice_endpoint
Running microservice endpoint
grpc_max_send_message_length
Max grpc send message size in bytes
grpc_max_receive_message_length
Max grpc receive message size in bytes
method
The microservice method to call
shape
The shape of the data to send
namespace
k8s namespace of running deployment
data
Numpy Array Payload to send
bin_data
Binary payload to send - will override data
str_data
String payload to send - will override data
json_data
String payload to send - will override data
custom_data
Custom payload to send - will override data
ndatas
Multiple numpy arrays to send for aggregation
bin_data
Binary data payload
str_data
String data payload
names
Column names
Returns
-------
A prediction result
"""
k = self._gather_args(
gateway=gateway,
transport=transport,
deployment_name=deployment_name,
payload_type=payload_type,
gateway_endpoint=gateway_endpoint,
microservice_endpoint=microservice_endpoint,
method=method,
shape=shape,
namespace=namespace,
datas=datas,
ndatas=ndatas,
names=names,
data=data,
bin_data=bin_data,
str_data=str_data,
json_data=json_data,
custom_data=custom_data,
)
self._validate_args(**k)
if k["transport"] == "rest":
if (
k["method"] == "predict"
or k["method"] == "transform-input"
or k["method"] == "transform-output"
or k["method"] == "route"
):
return microservice_api_rest_seldon_message(**k)
elif k["method"] == "aggregate":
return microservice_api_rest_aggregate(**k)
else:
raise SeldonClientException("Unknown method " + k["method"])
elif k["transport"] == "grpc":
if (
k["method"] == "predict"
or k["method"] == "transform-input"
or k["method"] == "transform-output"
or k["method"] == "route"
):
return microservice_api_grpc_seldon_message(**k)
elif k["method"] == "aggregate":
return microservice_api_grpc_aggregate(**k)
else:
raise SeldonClientException("Unknown method " + k["method"])
else:
raise SeldonClientException("Unknown transport " + k["transport"])
def microservice_feedback(
self,
prediction_request: prediction_pb2.SeldonMessage = None,
prediction_response: prediction_pb2.SeldonMessage = None,
reward: float = 0,
gateway: str = None,
transport: str = None,
deployment_name: str = None,
payload_type: str = None,
gateway_endpoint: str = None,
microservice_endpoint: str = None,
method: str = None,
shape: Tuple = (1, 1),
namespace: str = None,
) -> SeldonClientFeedback:
"""
Parameters
----------
prediction_request
Previous prediction request
prediction_response
Previous prediction response
reward
A reward to send in feedback
gateway
API Gateway - either Gateway or seldon
transport
API transport - grpc or rest
deployment_name
name of seldon deployment
payload_type
payload - tensor, ndarray or tftensor
gateway_endpoint
Gateway endpoint
microservice_endpoint
Running microservice endpoint
grpc_max_send_message_length
Max grpc send message size in bytes
grpc_max_receive_message_length
Max grpc receive message size in bytes
method
The microservice method to call
shape
The shape of the data to send
namespace
k8s namespace of running deployment
Returns
-------
A client response
"""
k = self._gather_args(
gateway=gateway,
transport=transport,
deployment_name=deployment_name,
payload_type=payload_type,
gateway_endpoint=gateway_endpoint,
microservice_endpoint=microservice_endpoint,
method=method,
shape=shape,
namespace=namespace,
)
self._validate_args(**k)
if k["transport"] == "rest":
return microservice_api_rest_feedback(
prediction_request, prediction_response, reward, **k
)
else:
return microservice_api_grpc_feedback(
prediction_request, prediction_response, reward, **k
)
def microservice_api_rest_seldon_message(
method: str = "predict",
microservice_endpoint: str = "localhost:5000",
shape: Tuple = (1, 1),
data: object = None,
payload_type: str = "tensor",
bin_data: Union[bytes, bytearray] = None,
str_data: str = None,
json_data: Union[str, List, Dict] = None,
names: Iterable[str] = None,
**kwargs,
) -> SeldonClientPrediction:
"""
Call Seldon microservice REST API
Parameters
----------
method
The microservice method to call
microservice_endpoint
Running microservice endpoint
grpc_max_send_message_length
Max grpc send message size in bytes
grpc_max_receive_message_length
Max grpc receive message size in bytes
method
The microservice method to call
shape
The shape of the data to send
namespace
k8s namespace of running deployment
shape
Shape of the data to send
data
Numpy array data to send
payload_type
payload - tensor, ndarray or tftensor
bin_data
Binary data payload
str_data
String data payload
json_data
JSON data payload
names
Column names
kwargs
Returns
-------
A SeldonClientPrediction data response
"""
if bin_data is not None:
request = prediction_pb2.SeldonMessage(binData=bin_data)
elif str_data is not None:
request = prediction_pb2.SeldonMessage(strData=str_data)
elif json_data is not None:
request = json_to_seldon_message({"jsonData": json_data})
else:
if data is None:
data = np.random.rand(*shape)
datadef = array_to_grpc_datadef(payload_type, data, names=names)
request = prediction_pb2.SeldonMessage(data=datadef)
payload = seldon_message_to_json(request)
response_raw = requests.post(
"http://" + microservice_endpoint + "/" + method,
data={"json": json.dumps(payload)},
)
if response_raw.status_code == 200:
success = True
msg = ""
else:
success = False
msg = response_raw.reason
try:
response = json_to_seldon_message(response_raw.json())
return SeldonClientPrediction(request, response, success, msg)
except Exception as e:
return SeldonClientPrediction(request, None, success, str(e))
def microservice_api_rest_aggregate(
microservice_endpoint: str = "localhost:5000",
shape: Tuple = (1, 1),
datas: List[np.ndarray] = None,
ndatas: int = None,
payload_type: str = "tensor",
names: Iterable[str] = None,
**kwargs,
) -> SeldonClientCombine:
"""
Call Seldon microservice REST API aggregate endpoint
Parameters
----------
microservice_endpoint
Running microservice endpoint
shape
The shape of the data to send
datas
List of Numpy array data to send
ndatas
Multiple numpy arrays to send for aggregation
payload_type
payload - tensor, ndarray or tftensor
names
Column names
kwargs
Returns
-------
A SeldonClientPrediction
"""
if datas is None:
datas = []
for n in range(ndatas):
data = np.random.rand(*shape)
datas.append(data)
msgs = []
for data in datas:
if isinstance(data, (bytes, bytearray)):
msgs.append(prediction_pb2.SeldonMessage(binData=data))
elif isinstance(data, str):
msgs.append(prediction_pb2.SeldonMessage(strData=data))
else:
datadef = array_to_grpc_datadef(payload_type, data, names)
msgs.append(prediction_pb2.SeldonMessage(data=datadef))
request = prediction_pb2.SeldonMessageList(seldonMessages=msgs)
payload = seldon_messages_to_json(request)
response_raw = requests.post(
"http://" + microservice_endpoint + "/aggregate",
data={"json": json.dumps(payload)},
)
if response_raw.status_code == 200:
success = True
msg = ""
else:
success = False
msg = response_raw.reason
try:
response = json_to_seldon_message(response_raw.json())
return SeldonClientCombine(request, response, success, msg)
except Exception as e:
return SeldonClientCombine(request, None, success, str(e))
def microservice_api_rest_feedback(
prediction_request: prediction_pb2.SeldonMessage = None,
prediction_response: prediction_pb2.SeldonMessage = None,
reward: float = 0,
microservice_endpoint: str = None,
**kwargs,
) -> SeldonClientFeedback:
"""
Call Seldon microserice REST API to send feedback
Parameters
----------
prediction_request
Previous prediction request
prediction_response
Previous prediction response
reward
A reward to send in feedback
microservice_endpoint
Running microservice endpoint
kwargs
Returns
-------
A SeldonClientFeedback
"""
request = prediction_pb2.Feedback(
request=prediction_request, response=prediction_response, reward=reward
)
payload = feedback_to_json(request)
response_raw = requests.post(
"http://" + microservice_endpoint + "/send-feedback",
data={"json": json.dumps(payload)},
)
if response_raw.status_code == 200:
success = True
msg = ""
else:
success = False
msg = response_raw.reason
try:
response = json_to_seldon_message(response_raw.json())
return SeldonClientFeedback(request, response, success, msg)
except Exception as e:
return SeldonClientFeedback(request, None, success, str(e))
def microservice_api_grpc_seldon_message(
method: str = "predict",
microservice_endpoint: str = "localhost:5000",
shape: Tuple = (1, 1),
data: object = None,
payload_type: str = "tensor",
bin_data: Union[bytes, bytearray] = None,
str_data: str = None,
json_data: Union[str, List, Dict] = None,
custom_data: any_pb2.Any = None,
grpc_max_send_message_length: int = 4 * 1024 * 1024,
grpc_max_receive_message_length: int = 4 * 1024 * 1024,
names: Iterable[str] = None,
**kwargs,
) -> SeldonClientPrediction:
"""
Call Seldon microservice gRPC API
Parameters