-
Notifications
You must be signed in to change notification settings - Fork 13
/
Copy pathmnist_CNN.py
63 lines (44 loc) · 1.59 KB
/
mnist_CNN.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
# coding: utf-8
# In[2]:
# Import libraries and modules
import numpy as np
np.random.seed(123) # for reproducibility
from keras.models import Sequential
from keras.layers import Dense, Dropout, Activation, Flatten
from keras.layers import Conv2D, MaxPooling2D
from keras.utils import np_utils
from keras.datasets import mnist
# Load pre-shuffled MNIST data into train and test sets
(X_train, y_train), (X_test, y_test) = mnist.load_data()
# Preprocess input data
X_train = X_train.reshape(X_train.shape[0], 28, 28, 1)
X_test = X_test.reshape(X_test.shape[0], 28, 28, 1)
X_train = X_train.astype('float32')
X_test = X_test.astype('float32')
X_train /= 255
X_test /= 255
# One hot vector
Y_train = np_utils.to_categorical(y_train, 10)
Y_test = np_utils.to_categorical(y_test, 10)
# Neural Network Architecure
model = Sequential()
model.add(Conv2D(32, (3, 3), activation='relu', input_shape=(28,28,1)))
model.add(Conv2D(32, (3, 3), activation='relu'))
model.add(MaxPooling2D(pool_size=(2,2)))
model.add(Dropout(0.25))
model.add(Flatten())
model.add(Dense(128, activation='relu'))
model.add(Dropout(0.5))
model.add(Dense(10, activation='softmax'))
# Compile model
model.compile(loss='categorical_crossentropy',
optimizer='adam',
metrics=['accuracy'])
# 9. Fit model on training data
model.fit(X_train, Y_train,
batch_size=32, epochs=10, verbose=1)
# 10. Evaluate model on test data
score = model.evaluate(X_test, Y_test, verbose=0)
# In[3]:
X_train = X_train.reshape(X_train.shape[0], (28, 28, 1), dtype=float32)
X_test = X_test.reshape(X_test.shape[0], 28, 28, 1)