-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmain.py
231 lines (211 loc) · 11.4 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
import argparse
import os
import sys
import numpy as np
import torch
from transformers import AutoTokenizer, AutoModelForCausalLM, LlamaConfig
from huggingface_hub import login
from importlib.metadata import version
from lib.prune import prune_wanda, prune_magnitude, prune_sparsegpt, check_sparsity, find_layers
from lib.eval import eval_ppl, eval_acc, eval_bleu, run_benchmarking, evaluate_task_result
import pdb
import os
print('torch', version('torch'))
print('transformers', version('transformers'))
print('accelerate', version('accelerate'))
print('# of gpus: ', torch.cuda.device_count())
with open("pat.txt", "r") as f:
pat = f.read().strip()
login(token=pat)
def get_llm(args, model_name, cache_dir="llm_weights", mode='llama'):
if args.calibration == 'svamp':
if mode == "llama":
model = AutoModelForCausalLM.from_pretrained(
model_name,
torch_dtype=torch.float16,
cache_dir=cache_dir,
low_cpu_mem_usage=True,
device_map="auto",
offload_folder="/content/offload",
use_auth_token=True
)
model.seqlen = args.seqlen
elif mode == "gpt2":
model = AutoModelForCausalLM.from_pretrained('gpt2',
torch_dtype=torch.float16,
cache_dir=cache_dir,
low_cpu_mem_usage=True,
device_map="auto",
offload_folder="/content/offload")
model.seqlen = 96
else:
model = AutoModelForCausalLM.from_pretrained(
model_name,
torch_dtype=torch.float16,
cache_dir=cache_dir,
low_cpu_mem_usage=True,
device_map="auto",
offload_folder="offload",
use_auth_token=True
)
model.seqlen = args.seqlen
return model
def main():
os.environ['CUDA_LAUNCH_BLOCKING'] = '1'
os.environ['TORCH_USE_CUDA_DSA'] = '1'
parser = argparse.ArgumentParser()
parser.add_argument('--model', type=str, help='LLaMA model')
parser.add_argument('--seed', type=int, default=0, help='Seed for sampling the calibration data.')
parser.add_argument('--nsamples', type=int, default=128, help='Number of calibration samples.')
parser.add_argument('--sparsity_ratio', type=float, default=0.5, help='Sparsity level')
parser.add_argument("--sparsity_type", type=str, choices=["unstructured", "4:8", "2:4"])
parser.add_argument("--prune_method", type=str, choices=["magnitude", "wanda", "sparsegpt", "none"])
parser.add_argument("--cache_dir", default="llm_weights", type=str)
parser.add_argument('--use_variant', action="store_true", help="whether to use the wanda variant described in the appendix")
parser.add_argument('--save', type=str, default=None, help='Path to save results.')
parser.add_argument('--append_to_file', type=str, default=None, help='File to append results to.')
parser.add_argument('--save_model', type=str, default=None, help='Path to save the pruned model.')
parser.add_argument('--calibration', type=str, nargs='+', default='c4',
choices=['c4', 'oscar', 'redpajama', 'pile', 'gsm8k', 'svamp', 'mawps', 'anli_r1', 'anli_r2',
'anli_r3', 'esnli', 'rte', 'boolq', 'commonsense_qa', 'race',
'winogrande', 'wmt14', 'iwslt', 'ellipses', 'random'])
parser.add_argument('--rationale', action='store_true')
parser.add_argument('--eval_rationale', action='store_true')
parser.add_argument('--eval', type=str, default='wikitext',
choices=['wikitext', 'redpajama', 'oscar', 'gsm8k', 'svamp', 'mawps', 'anli_r1',
'anli_r2', 'anli_r3', 'esnli', 'rte', 'boolq',
'commonsense_qa', 'race', 'winogrande', 'wmt14', 'iwslt', 'all'])
parser.add_argument('--skip_dense_eval', action='store_true')
parser.add_argument('--input_format', type=str, default='concat', choices=['autoregressive', 'single', 'concat', 'zero'])
parser.add_argument('--benchmark_task', type=str, default='boolq', choices=['boolq', 'rte', 'hellaswag', 'winogrande', 'openbookqa', 'arc_easy', 'arc_challenge'])
parser.add_argument('--padding_side', type=str, default='left', choices=['left', 'right'])
parser.add_argument('--shot', type=str, default='few', choices=['few', 'zero'])
parser.add_argument('--attention_mask_type', type=str, default='configured', choices=['default', 'configured'])
parser.add_argument('--seqlen', type=int, default=2048)
parser.add_argument('--data_seqlen', type=int, default=None)
parser.add_argument('--num_incontext', type=int)
parser.add_argument('--num_cot_steps', type=int)
parser.add_argument('--verbose', action='store_true')
args = parser.parse_args()
print('args', args)
#ppl_datasets = []
ppl_datasets = ['wikitext', 'redpajama', 'oscar']
acc_datasets = ['gsm8k', 'svamp', 'mawps', 'esnli', 'anli_r1', 'anli_r2', 'anli_r3', 'commonsense_qa', 'race', 'winogrande']
bleu_datasets = ['wmt14', 'iwslt']
# Setting seeds for reproducibility
np.random.seed(args.seed)
torch.random.manual_seed(args.seed)
# Handling n:m sparsity
prune_n, prune_m = 0, 0
if args.sparsity_type != "unstructured":
assert args.sparsity_ratio == 0.5, "sparsity ratio must be 0.5 for structured N:M sparsity"
prune_n, prune_m = map(int, args.sparsity_type.split(":"))
model_name = args.model.split("/")[-1]
print(f"loading llm model {args.model}")
model = get_llm(args, args.model, args.cache_dir)
model.eval()
tokenizer = AutoTokenizer.from_pretrained(args.model, use_fast=False, padding_side=args.padding_side, token=pat)
tokenizer.add_special_tokens({'pad_token': '[PAD]'})
model.resize_token_embeddings(len(tokenizer))
#if args.calibration != "anli":
#print('Running Benchmarking')
#run_benchmarking(model, tokenizer, args.benchmark_task)
#print('Evaluating on Benchmarks')
#evaluate_task_result(args.benchmark_task)
device = torch.device("cuda:0")
if "30b" in args.model or "65b" in args.model: # for 30b and 65b we use device_map to load onto multiple A6000 GPUs, thus the processing here.
device = model.hf_device_map["lm_head"]
print("use device ", device)
if not args.skip_dense_eval:
print('Dense Model Scores:')
if args.eval == 'all':
for dataset in ppl_datasets:
ppl = eval_ppl(model, tokenizer, device, verbose=args.verbose)
print(f"Perplexity on {dataset}: {ppl}")
for dataset in acc_datasets:
acc = eval_acc(args, model, tokenizer, device, dataset=dataset, verbose=args.verbose)
print(f"Acc. on {dataset}: {acc}")
for dataset in bleu_datasets:
bleu = eval_bleu(args, model, tokenizer, device, dataset=dataset, verbose=args.verbose)['bleu']
print(f"Acc. on {dataset}: {acc}")
elif args.eval in ppl_datasets:
ppl = eval_ppl(model, tokenizer, device, verbose=args.verbose)
print(f"Perplexity on {args.eval}: {ppl}")
elif args.eval in acc_datasets:
acc = eval_acc(args, model, tokenizer, device, dataset=args.eval, shot=args.shot, verbose=args.verbose)
print(f"Acc. on {args.eval}: {acc}")
elif args.eval in bleu_datasets:
bleu = eval_bleu(args, model, tokenizer, device, dataset=args.eval, shot=args.shot, verbose=args.verbose)['bleu']
print(f"bleu on {args.eval}: {bleu}")
if args.sparsity_ratio != 0:
print("pruning starts")
if args.prune_method == "wanda":
prune_wanda(args, model, tokenizer, device, prune_n=prune_n, prune_m=prune_m)
elif args.prune_method == "magnitude":
prune_magnitude(args, model, tokenizer, device, prune_n=prune_n, prune_m=prune_m)
elif args.prune_method == "sparsegpt":
prune_sparsegpt(args, model, tokenizer, device, prune_n=prune_n, prune_m=prune_m)
################################################################
print("*"*30)
sparsity_ratio = check_sparsity(args, model)
print(f"sparsity sanity check {sparsity_ratio:.4f}")
print("*"*30)
################################################################
print('Sparse Model Scores:')
if args.eval == 'all':
for dataset in ppl_datasets:
ppl = eval_ppl(model, tokenizer, device, verbose=args.verbose)
print(f"Perplexity on {dataset}: {ppl}")
for dataset in acc_datasets:
acc = eval_acc(args, model, tokenizer, device, dataset=dataset, verbose=args.verbose)
print(f"Acc. on {dataset}: {acc}")
for dataset in bleu_datasets:
bleu = eval_bleu(args, model, tokenizer, device, dataset=dataset, verbose=args.verbose)['bleu']
print(f"Acc. on {dataset}: {acc}")
elif args.eval in ppl_datasets:
ppl = eval_ppl(model, tokenizer, device, verbose=args.verbose)
print(f"Perplexity on {args.eval}: {ppl}")
elif args.eval in acc_datasets:
acc = eval_acc(args, model, tokenizer, device, dataset=args.eval, shot=args.shot, verbose=args.verbose)
print(f"Acc. on {args.eval}: {acc}")
elif args.eval in bleu_datasets:
bleu = eval_bleu(args, model, tokenizer, device, dataset=args.eval, shot=args.shot, verbose=args.verbose)['bleu']
print(f"bleu on {args.eval}: {bleu}")
#if args.calibration != "anli":
#print('Running Benchmarking')
#run_benchmarking(model, tokenizer, args.benchmark_task)
#print('Evaluating on Benchmarks')
#evaluate_task_result(args.benchmark_task)
#sys.exit(1)
if args.save:
args.save = os.path.join(args.save, model_name, args.prune_method)
if not os.path.exists(args.save):
os.makedirs(args.save)
save_filepath = os.path.join(args.save, f'calibration_{args.calibration}_format_'
f'{args.input_format}_eval_{args.eval}_{args.padding_side}_padding_'
f'{args.shot}_shot_evaluation.txt')
with open(save_filepath, "w") as f:
if args.eval in ppl_datasets:
print("actual_sparsity\tppl", file=f, flush=True)
print(f"{sparsity_ratio:.4f}\t{ppl:.4f}", file=f, flush=True)
elif args.eval in acc_datasets:
print("actual_sparsity\tacc", file=f, flush=True)
print(f"{sparsity_ratio:.4f}\t{acc:.4f}", file=f, flush=True)
elif args.eval in bleu_datasets:
print("actual_sparsity\tbleu", file=f, flush=True)
print(f"{sparsity_ratio:.4f}\t{bleu:.4f}", file=f, flush=True)
if args.append_to_file:
with open(args.append_to_file, "a") as f:
if args.eval in ppl_datasets:
print(f"{ppl:.4f}", file=f, flush=True, end="")
elif args.eval in acc_datasets:
print(f"{acc:.4f}", file=f, flush=True, end="")
elif args.eval in bleu_datasets:
print(f"{bleu:.4f}", file=f, flush=True, end="")
if args.save_model:
if not os.path.exists(args.save_model):
os.makedirs(args.save_model)
model.save_pretrained(args.save_model)
tokenizer.save_pretrained(args.save_model)
if __name__ == '__main__':
main()