-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathexample1.log
72 lines (64 loc) · 3.87 KB
/
example1.log
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
./example1.out ex.dat
"mfb.txt" No.00 -- focused beam --
medium density [kg/m^3] : 1000
speed of sound in the medium [m/s] : 1500
frequency [Hz] : 100000
sound pressure amplitude [Pa] : 10+ 0I
radius of focused transducer [m] : 0.045
curvature radius of the transducer [m] : 0.072
x-component of translation vector [m] : 0
y-component of translation vector [m] : 0
z-component of translation vector [m] : 0
rotation parameter theta [rad] : 0
rotation parameter psi [rad] : 0
sampling number for Gauss-Legendre quadrature : 64
-- additional information --
wavelength [m] : 0.015
energy passing through a plane orthogonal to the acoustic axis [W]
: 1.4965495613794e-06
---- sphere data ( msphr.txt ) ----
number of spheres : 1
Sphere ID 0
medium density [kg/m^3] : 970
speed of sound in the medium [m/s] : 1004
radius of sphere : 0.005
x-coordinate of sphere center : 0
y-coordinate of sphere center : 0
z-coordinate of sphere center : 0
basic sampling number on sphere surface : 64
division number for sphere surface (per PI): 2
limit of order number l : 40
sound pressure and particle velocity at r=(-0.03, 0.01, 0.002)
p = 7.05137751697792e-02 +8.31476316480848e-02 I [Pa]
vx =-4.82149957309822e-08 -3.33653393028854e-08 I [m/s]
vy = 1.60716652436607e-08 +1.11217797676285e-08 I [m/s]
vz = 1.18240600570704e-08 +1.76390573607237e-08 I [m/s]
radiation force of sphere id 0
F=( 0.00000000000000e+00, 0.00000000000000e+00, 1.17941435220181e-14) [N]
-- verification of relation of sound pressure and particle velocity --
relation : v = 1/k2 nabla p, k2 = i omega rho.
calculate the derivative of p using the central difference. h=1e-06
sphere id 0, r=(0.259343, 0.14168, 0.955336), outside the sphere
scattered_pv_amsp() : v_x =-9.84160996856157e-10 -9.74918975300536e-10 I
central difference : v_x =-9.84160994837032e-10 -9.74918973633548e-10 I
scattered_pv_amsp() : v_y =-5.37649602989666e-10 -5.32600663602640e-10 I
central difference : v_y =-5.37649602741243e-10 -5.32600663660300e-10 I
scattered_pv_amsp() : v_z =-3.63227460202093e-09 -3.58023321562119e-09 I
central difference : v_z =-3.63227450551388e-09 -3.58023311971050e-09 I
-- verification of boundary conditions --
internal field p_w, v_w, scattered field p_s, v_s, incident field p_i, v_i
boundary condition of sound pressure : p_i + p_s = p_w
boundary condition of particle velocity : (v_i + v_s) dot n = v_w dot n
sphere id 0, r=(0.00129672, 0.0007084, 0.00477668), n=(0.259343, 0.14168, 0.955336)
p_i + p_s =-4.09362723941146e-01 +1.84311038187542e+00 I
p_w =-4.09362723941150e-01 +1.84311038187543e+00 I
(v_i + v_s) dot n =-6.88266200716511e-07 +5.64588145402958e-07 I
v_w dot n =-6.88266200716512e-07 +5.64588145402973e-07 I
-- verification of radiation force analysis --
F_f : far field method ( summation of field coefficients )
F_n : near field method ( surface integral of radiation stress tensor )
sphere id 0, rotation cetner rc=(0, 0, 0)
F_f=( 0.00000000000000e+00, 0.00000000000000e+00, 1.17941435220181e-14)
F_n=(-1.35745230900269e-30, 2.46872698961078e-31, 1.17941435220181e-14)
N_f=( 0.00000000000000e+00, 0.00000000000000e+00, 0.00000000000000e+00)
N_n=( 3.87681411641940e-34, -1.75909305375825e-34, 1.42295636609276e-34)