-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathln_cls.py
423 lines (333 loc) · 14.9 KB
/
ln_cls.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
import os
import time
import random
import argparse
import yaml
import numpy as np
import torch
import torch.nn as nn
import torch.backends.cudnn as cudnn
from torchvision import models
from utils import log, computeAUROC
from barbar import Bar
from data import DataLoader
from data.constants import NIH_TASKS, Chex14_TASKS
def parse_args():
parser = argparse.ArgumentParser(description='MLVICX Downstream Evaluation.')
# Mode settings
parser.add_argument('-tmode', default='down', choices=['pre', 'down'])
parser.add_argument('-mode', default='ssl', choices=['ssl', 'sl'])
parser.add_argument('-dmode', default='lp', choices=['lp', 'lf'])
# Model settings
parser.add_argument('-init', default='random', choices=['random', 'imagenet'])
parser.add_argument('-model', default='mlvicx')
parser.add_argument('-arch', default='resnet18')
# Training hyperparameters
parser.add_argument('-bs', default=128, type=int)
parser.add_argument('-lr_min', default=0.000001, type=float, help='minimum learning rate')
parser.add_argument('-wd', default=0.0, type=float)
parser.add_argument('-epochs', default=300, type=int)
parser.add_argument('-patience', default=10, type=int)
# Dataset settings
parser.add_argument('-data_per', default=1.0, type=float)
parser.add_argument('-dataset', default='NIH14', choices=['NIH14', 'Chex14'])
parser.add_argument('-pre_dataset', default='NIH14')
parser.add_argument('-evaltask', default='NIH_TASKS', choices=['NIH_TASKS', 'Chex14_TASKS'])
# Pretraining params
parser.add_argument('-pre_bs', default=64, type=int)
parser.add_argument('-pre_ep', default=300, type=int)
parser.add_argument('-eval_epoch', default=None, type=int)
parser.add_argument('-metric', default='auc', choices=['auc', 'f1'])
# Misc
parser.add_argument('-resume', default=False, action='store_true')
parser.add_argument('-seed', default=42, type=int)
parser.add_argument('-gpu', default=0, type=int)
parser.add_argument('-ver', default=None, type=str)
return parser.parse_args()
def set_seed(seed):
random.seed(seed)
np.random.seed(seed)
torch.manual_seed(seed)
torch.cuda.manual_seed_all(seed)
torch.backends.cudnn.deterministic = True
torch.backends.cudnn.benchmark = False
os.environ['PYTHONHASHSEED'] = str(seed)
class Classifier(nn.Module):
def __init__(self, base_encoder, output_dim, proxy_weight=None, use_sigmoid=True):
super(Classifier, self).__init__()
self.model = base_encoder
self.n_inputs = self.model.fc.in_features
self.model.fc = nn.Identity()
if proxy_weight:
try:
self._load_pretrained_weights(proxy_weight)
print(f'Pre-trained weights loaded from {proxy_weight}')
except Exception as e:
print(f"Error loading weights: {str(e)}")
if use_sigmoid:
self.linear = nn.Sequential(
nn.Linear(self.n_inputs, output_dim),
nn.Sigmoid()
)
else:
self.linear = nn.Linear(self.n_inputs, output_dim)
def _load_pretrained_weights(self, proxy_weight):
state_dict = {}
length = len(self.model.state_dict())
# Use weights_only=True to avoid security risks with pickle
checkpoint = torch.load(proxy_weight, map_location='cpu', weights_only=True)
if 'online_network' in checkpoint:
checkpoint = checkpoint['model']['online_network']
prefix = 'encoder.'
for name, param in self.model.state_dict().items():
if name in checkpoint:
state_dict[name] = checkpoint[name]
elif prefix + name in checkpoint:
state_dict[name] = checkpoint[prefix + name]
elif 'online' in checkpoint:
for name, param in zip(self.model.state_dict(), list(checkpoint['online'].values())[:length]):
state_dict[name] = param
else:
for name, param in zip(self.model.state_dict(), list(checkpoint.values())[:length]):
state_dict[name] = param
self.model.load_state_dict(state_dict)
def forward(self, x):
x = self.model(x)
x = x.view(x.size(0), -1)
return self.linear(x)
def count_parameters(model):
"""Count trainable parameters in millions"""
params = sum(p.numel() for p in model.parameters() if p.requires_grad)
return params / 1000000
def train(model, loader, criterion, optimizer, scheduler, device):
"""Train model for one epoch"""
model.train()
total_loss = 0
for idx, (img, target) in enumerate(Bar(loader)):
target = target.to(device)
img = img.to(device)
# Forward pass
output = model(img)
loss = criterion(output, target)
optimizer.zero_grad()
loss.backward()
torch.nn.utils.clip_grad_norm_(model.parameters(), max_norm=1.0)
optimizer.step()
total_loss += loss.item()
scheduler.step()
current_lr = optimizer.param_groups[0]['lr']
print(f"_Current LR: {current_lr:.6f}")
return total_loss / len(loader)
def valid(model, loader, device, num_classes):
"""Validate model performance"""
model.eval()
outGT = torch.FloatTensor().to(device)
outPRED = torch.FloatTensor().to(device)
with torch.no_grad():
for idx, (img, target) in enumerate(Bar(loader)):
target = target.to(device)
img = img.to(device)
output = model(img)
outGT = torch.cat((outGT, target), 0)
outPRED = torch.cat((outPRED, output), 0)
# Calculate metrics
metric_individual = computeAUROC(outGT, outPRED)
metric_mean = np.array(metric_individual).mean()
return metric_individual, metric_mean
def test(model, loader, device, num_classes):
"""Test model and return predictions and ground truth"""
model.eval()
outGT = torch.FloatTensor().to(device)
outPRED = torch.FloatTensor().to(device)
with torch.no_grad():
for idx, (img, target) in enumerate(Bar(loader)):
target = target.to(device)
img = img.to(device)
output = model(img)
outGT = torch.cat((outGT, target), 0)
outPRED = torch.cat((outPRED, output), 0)
# Calculate metrics
metric_individual = computeAUROC(outGT, outPRED)
metric_mean = np.array(metric_individual).mean()
return metric_individual, metric_mean
def main():
# Parse arguments
# args = parser.parse_args()
args = parse_args()
print('Mode:', args.mode)
# Set random seed
set_seed(args.seed)
# Load configuration
config_file_path = "./configs/resnet18/mlvicx.yaml"
with open(config_file_path, 'r') as f:
config = yaml.safe_load(f)
# Update config based on args
config['mode'] = args.mode
config['tmode'] = args.tmode
config['downstream_mode'] = args.dmode
config['data']['data_pct'] = args.data_per
config['data']['task'] = args.evaltask
config['data']['dataset'] = args.dataset
# Set up device
device = torch.device(f"cuda:{args.gpu}" if torch.cuda.is_available() else "cpu")
# Determine class names and tasks based on dataset
if args.dataset == 'NIH14':
class_names = NIH_TASKS
config['data']['task'] = class_names
data_ins = DataLoader(config)
train_loader, valid_loader, test_loader = data_ins.GetNihDataset()
num_classes = len(class_names)
elif args.dataset == 'Chex14':
class_names = Chex14_TASKS
config['data']['task'] = class_names
data_ins = DataLoader(config)
train_loader, valid_loader, test_loader = data_ins.GetChex14Dataset()
num_classes = len(class_names)
else:
raise ValueError(f"Unsupported dataset: {args.dataset}")
# Set up model based on training mode
if args.mode == 'sl':
# Supervised learning mode
proxy_weight = None
args.model = 'supervised'
if args.init == 'random':
base_encoder = models.__dict__[args.arch](weights=None)
elif args.init == 'imagenet':
if args.arch == 'resnet18':
base_encoder = models.__dict__[args.arch](weights=models.ResNet18_Weights.IMAGENET1K_V1)
elif args.arch == 'resnet50':
base_encoder = models.__dict__[args.arch](weights=models.ResNet50_Weights.IMAGENET1K_V1)
else:
base_encoder = models.__dict__[args.arch](weights=models.ResNet18_Weights.IMAGENET1K_V1)
save_path = os.path.join('./ckpt', 'supervised', args.init, args.dataset)
proxy_dir = 'supervised'
elif args.mode == 'ssl':
# Self-supervised learning mode
base_encoder = models.__dict__[args.arch](weights=None)
# Set up paths for pretrained model
method_name = f'{args.model.lower()}{args.ver if args.ver else ""}'
save_path = os.path.join('./ckpt', method_name)
# Use command line arguments for pretraining settings
pre_bs = args.pre_bs
pre_ep = args.pre_ep
model_dir_pattern = f'{args.arch}_{args.pre_dataset}_{pre_bs}_{pre_ep}'
# Find the directory containing the pretrained model
try:
proxy_dir = next((item for item in os.listdir(save_path)
if model_dir_pattern in item), None)
if proxy_dir is None:
raise FileNotFoundError(f"No pretrained model directory matching pattern: {model_dir_pattern}")
print('Found pretrained model directory:', proxy_dir)
# Determine path to pretrained weights
if args.eval_epoch is not None:
proxy_weight = os.path.join(save_path, proxy_dir, f'{proxy_dir}_{args.eval_epoch}.pth')
else:
proxy_weight = os.path.join(save_path, proxy_dir, f'{proxy_dir}.pth')
except Exception as e:
print(f"Error finding pretrained model: {str(e)}")
print("Continuing with randomly initialized model...")
proxy_dir = model_dir_pattern
proxy_weight = None
else:
raise ValueError("Invalid mode. Select either 'sl' or 'ssl'")
# Setup checkpoint directory
ckpt_path = os.path.join(save_path, proxy_dir, f"{args.evaltask}_downstream",
str(args.data_per), args.dmode)
config['checkpoint']['ckpt_path'] = ckpt_path
os.makedirs(ckpt_path, exist_ok=True)
# Setup method name for saving
method_name = f"{proxy_dir}_{args.data_per}_{args.dmode}"
if args.eval_epoch is not None:
method_name += f"_{args.eval_epoch}"
print('Checkpoints will be saved at:', ckpt_path)
# Initialize logger
logger = log(path=ckpt_path, file=f"{method_name}.logs")
# Create classifier model
criterion = torch.nn.BCELoss()
classifier = Classifier(base_encoder, num_classes, proxy_weight, use_sigmoid=True)
if args.dmode == 'lp': # Linear probing - freeze backbone
lr = 0.003
for param in classifier.model.parameters():
param.requires_grad = False
if args.dmode == 'lf': #finetune
lr = 0.0003
# Count trainable parameters
num_params = count_parameters(classifier)
# Setup optimizer
optimizer = torch.optim.AdamW(
classifier.parameters(),
lr=lr,
betas=(0.9, 0.999),
eps=1e-08,
weight_decay=args.wd
)
scheduler = torch.optim.lr_scheduler.CosineAnnealingWarmRestarts(
optimizer,
T_0=10, # Restart every 10 epochs
T_mult=2, # Double the restart interval after each restart
eta_min=args.lr_min
)
# Move model to device
classifier = classifier.to(device)
# Log model information
logger.info("Initializing model!")
logger.info(f"Configuration: {config}")
logger.info(f"Total trainable parameters: {num_params:.2f}M")
logger.info(f"Model architecture: {classifier}")
# Training loop with early stopping
best_metric = 0.0
best_epoch = 0
patience_counter = 0
for epoch in range(args.epochs):
# Train one epoch
train_loss = train(classifier, train_loader, criterion, optimizer, scheduler, device)
# Validate
metric_individual, metric_mean = valid(classifier, valid_loader, device, num_classes)
# Log progress
metric_name = 'AUC' if args.metric == 'auc' else 'F1'
logger.info(f'Epoch: [{epoch}]\t'
f'Train Loss: {train_loss:.5f}\t'
f'Valid {metric_name}: {metric_mean:.4f}\t')
# Save model state
model_state = {
'config': config,
'epoch': epoch,
'best_metric': best_metric,
'best_epoch': best_epoch,
'model': classifier.state_dict(),
'optimizer': optimizer.state_dict(),
}
# Check for improvement
if metric_mean > best_metric:
logger.info(f'{metric_name} increased ({best_metric:.4f} --> {metric_mean:.4f}). Saving model...')
torch.save(model_state, os.path.join(ckpt_path, f'{method_name}.pth'))
best_metric = metric_mean
best_epoch = epoch
patience_counter = 0
else:
patience_counter += 1
# Early stopping check
if patience_counter >= args.patience:
logger.info(f"No improvement for {args.patience} epochs. Early stopping...")
break
# Log best performance
logger.info(f"Best {metric_name}: {best_metric:.4f} at epoch {best_epoch}")
# Log per-class metrics if available
if args.metric == 'auc' and metric_individual is not None:
for i in range(len(metric_individual)):
logger.info(f'{class_names[i]}: {metric_individual[i]:.4f}')
# Test phase
logger.info("\nTesting best model...")
checkpoint_path = os.path.join(ckpt_path, f'{method_name}.pth')
checkpoint = torch.load(checkpoint_path, map_location=device, weights_only = False)
classifier.load_state_dict(checkpoint['model'], strict=True)
classifier = classifier.to(device)
metric_individual, metric_mean = test(classifier, test_loader, device, num_classes)
# Log test results
logger.info(f'\nTest Results:\n'
f'AUC: {metric_mean:.4f}')
# Log per-class metrics
for i in range(num_classes):
logger.info(f'{class_names[i]}: {metric_individual[i]:.4f}')
if __name__ == '__main__':
main()