|
| 1 | +--- |
| 2 | +layout: default |
| 3 | +title: Lifted hydrogen jet flame |
| 4 | +description: Circular Burner Diluted Partially-Premixed H2-air Lifted Flame in 2D configuration |
| 5 | +--- |
| 6 | + |
| 7 | +<div style="text-align: center;"> |
| 8 | + <img src="/assets/img/sharma2024.png" alt="Image 1" style="max-width: 100%;"> |
| 9 | +</div> |
| 10 | + |
| 11 | +# Description |
| 12 | + |
| 13 | +This configuration involves 8 parametric variations of lifted hydrogen jet flame in heated co-flow air. The central circular jet with $D = 1.92\mathrm{ mm}$ consists of a mixture of 65\% of hydrogen and 35\% of nitrogen by volume with an inlet temperature of $400\mathrm{ K}$. The jet is surrounded by a co-flow of heated air at $1100\mathrm{ K}$ and 1 bar pressure. |
| 14 | +The jet Reynolds number is varied between 5000 to 11000. The computational domain size is $12.5D \times 15.6D$. A detailed hydrogen-air chemical mechanism composed of 9 species and 21 elementary reactions is employed in this study. |
| 15 | +A uniform grid size of $15\mathrm{\mu m}$ is placed in both axial and spanwise direction, resulting in a grid size of $1600\times2000$. Two additional inert mixing cases are also added corresponding to jet Reynolds number of 5000 and 10000. |
| 16 | + |
| 17 | +A compressible unstructured finite-volume solver is used to numerically solve the conservation laws for mass, momentum, total energy, and chemical species. |
| 18 | +The convective fluxes are discretized using a sensor-based hybrid scheme, where a high-order, non-dissipative scheme is combined with a low-order scheme to describe interfaces and flow field discontinuities. |
| 19 | +A central scheme, which is 4th-order accurate on uniform meshes, is used along with a 2nd-order accurate ENO scheme. |
| 20 | +We apply a second-order accurate simpler balanced-splitting scheme to separate the convection, diffusion, and reaction operators. |
| 21 | +The stiff chemical source terms are integrated in time using a semi-implicit fourth-order accurate Rosenbrock-Krylov scheme. |
| 22 | +For all other non-stiff operators, we utilize a strong stability preserving third-order Runge-Kutta (SSP-RK3) scheme. |
| 23 | + |
| 24 | +# Quick Info |
| 25 | +* Contributor: Pushan Sharma, Wai Tong Chung and Matthias Ihme |
| 26 | + |
| 27 | +# Links to different cases |
| 28 | + |
| 29 | +<table align="center"> |
| 30 | + <tr class="header"> |
| 31 | + <th style="width:10%;">Reynolds number</th> |
| 32 | + <!-- <th style="width:60%;">Article</th> --> |
| 33 | + <th style="width:5%;">Links</th> |
| 34 | + </tr> |
| 35 | + <tr> |
| 36 | + <td align="center">Re<sub>jet</sub>= 5000</td> |
| 37 | + <td align="center"> |
| 38 | + <a href="https://www.kaggle.com/datasets/sharmapushan/hydrogen-jet-5000">Kaggle</a><BR> |
| 39 | + <a href="./assets/json/sharma2024/Re5000_info.json">info.json</a> |
| 40 | + </td> |
| 41 | + </tr> |
| 42 | + <tr> |
| 43 | + <td align="center">Re<sub>jet</sub>= 6000</td> |
| 44 | + <td align="center"> |
| 45 | + <a href="https://www.kaggle.com/datasets/sharmapushan/hydrogen-jet-6000">Kaggle</a><BR> |
| 46 | + <a href="./assets/json/sharma2024/Re6000_info.json">info.json</a> |
| 47 | + </td> |
| 48 | + </tr> |
| 49 | + <tr> |
| 50 | + <td align="center">Re<sub>jet</sub>= 7000</td> |
| 51 | + <td align="center"> |
| 52 | + <a href="https://www.kaggle.com/datasets/sharmapushan/hydrogen-jet-7000">Kaggle</a><BR> |
| 53 | + <a href="./assets/json/sharma2024/Re7000_info.json">info.json</a> |
| 54 | + </td> |
| 55 | + </tr> |
| 56 | + <tr> |
| 57 | + <td align="center">Re<sub>jet</sub>= 7500</td> |
| 58 | + <td align="center"> |
| 59 | + <a href="https://www.kaggle.com/datasets/sharmapushan/hydrogen-jet-7500">Kaggle</a><BR> |
| 60 | + <a href="./assets/json/sharma2024/Re7500_info.json">info.json</a> |
| 61 | + </td> |
| 62 | + </tr> |
| 63 | + <tr> |
| 64 | + <td align="center">Re<sub>jet</sub>= 8000</td> |
| 65 | + <td align="center"> |
| 66 | + <a href="https://www.kaggle.com/datasets/sharmapushan/hydrogen-jet-8000">Kaggle</a><BR> |
| 67 | + <a href="./assets/json/sharma2024/Re8000_info.json">info.json</a> |
| 68 | + </td> |
| 69 | + </tr> |
| 70 | + <tr> |
| 71 | + <td align="center">Re<sub>jet</sub>= 9000</td> |
| 72 | + <td align="center"> |
| 73 | + <a href="https://www.kaggle.com/datasets/sharmapushan/hydrogen-jet-9000">Kaggle</a><BR> |
| 74 | + <a href="./assets/json/sharma2024/Re9000_info.json">info.json</a> |
| 75 | + </td> |
| 76 | + </tr> |
| 77 | + <tr> |
| 78 | + <td align="center">Re<sub>jet</sub>= 10000</td> |
| 79 | + <td align="center"> |
| 80 | + <a href="https://www.kaggle.com/datasets/sharmapushan/hydrogen-jet-10000">Kaggle</a><BR> |
| 81 | + <a href="./assets/json/sharma2024/Re10000_info.json">info.json</a> |
| 82 | + </td> |
| 83 | + </tr> |
| 84 | + <tr> |
| 85 | + <td align="center">Re<sub>jet</sub>= 11000</td> |
| 86 | + <td align="center"> |
| 87 | + <a href="https://www.kaggle.com/datasets/sharmapushan/hydrogen-jet-11000">Kaggle</a><BR> |
| 88 | + <a href="./assets/json/sharma2024/Re11000_info.json">info.json</a> |
| 89 | + </td> |
| 90 | + </tr> |
| 91 | + <tr> |
| 92 | + <td align="center">Re<sub>jet</sub>= 5000 (inert mixing)</td> |
| 93 | + <td align="center"> |
| 94 | + <a href="https://www.kaggle.com/datasets/sharmapushan/nonreacting-hydrogen-jet-5000">Kaggle</a><BR> |
| 95 | + <a href="./assets/json/sharma2024/Re5000_inert_info.json">info.json</a> |
| 96 | + </td> |
| 97 | + </tr> |
| 98 | + <tr> |
| 99 | + <td align="center">Re<sub>jet</sub>= 10000 (inert mixing)</td> |
| 100 | + <td align="center"> |
| 101 | + <a href="https://www.kaggle.com/datasets/sharmapushan/nonreacting-hydrogen-jet-10000">Kaggle</a><BR> |
| 102 | + <a href="./assets/json/sharma2024/Re10000_inert_info.json">info.json</a> |
| 103 | + </td> |
| 104 | + </tr> |
| 105 | +</table> |
0 commit comments