-
Notifications
You must be signed in to change notification settings - Fork 12
/
Copy pathutil.py
219 lines (170 loc) · 7.96 KB
/
util.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
from __future__ import absolute_import
import torch
import torch.nn as nn
import numpy as np
import matplotlib.pyplot as plt
import os
import sys
from dataloader import get_dataloaders
class LabelSmoothing(nn.Module):
"""
NLL loss with label smoothing.
"""
def __init__(self, smoothing=0.0):
"""
Constructor for the LabelSmoothing module.
:param smoothing: label smoothing factor
"""
super(LabelSmoothing, self).__init__()
self.confidence = 1.0 - smoothing
self.smoothing = smoothing
def forward(self, x, target):
logprobs = torch.nn.functional.log_softmax(x, dim=-1)
nll_loss = -logprobs.gather(dim=-1, index=target.unsqueeze(1))
nll_loss = nll_loss.squeeze(1)
smooth_loss = -logprobs.mean(dim=-1)
loss = self.confidence * nll_loss + self.smoothing * smooth_loss
return loss.mean()
class BCEWithLogitsLoss(nn.Module):
def __init__(self, weight=None, size_average=None, reduce=None, reduction='mean', pos_weight=None, num_classes=64):
super(BCEWithLogitsLoss, self).__init__()
self.num_classes = num_classes
self.criterion = nn.BCEWithLogitsLoss(weight=weight,
size_average=size_average,
reduce=reduce,
reduction=reduction,
pos_weight=pos_weight)
def forward(self, input, target):
target_onehot = F.one_hot(target, num_classes=self.num_classes)
return self.criterion(input, target_onehot)
class AverageMeter(object):
"""Computes and stores the average and current value"""
def __init__(self):
self.reset()
def reset(self):
self.val = 0
self.avg = 0
self.sum = 0
self.count = 0
def update(self, val, n=1):
self.val = val
self.sum += val * n
self.count += n
self.avg = self.sum / self.count
def adjust_learning_rate(epoch, opt, optimizer):
"""Sets the learning rate to the initial LR decayed by decay rate every steep step"""
steps = np.sum(epoch > np.asarray(opt.lr_decay_epochs))
if steps > 0:
new_lr = opt.learning_rate * (opt.lr_decay_rate ** steps)
for param_group in optimizer.param_groups:
param_group['lr'] = new_lr
def accuracy(output, target, topk=(1,)):
"""Computes the accuracy over the k top predictions for the specified values of k"""
with torch.no_grad():
maxk = max(topk)
batch_size = target.size(0)
_, pred = output.topk(maxk, 1, True, True)
pred = pred.t()
correct = pred.eq(target.view(1, -1).expand_as(pred))
res = []
for k in topk:
correct_k = correct[:k].view(-1).float().sum(0, keepdim=True)
res.append(correct_k.mul_(100.0 / batch_size))
return res
class Logger(object):
'''Save training process to log file with simple plot function.'''
def __init__(self, fpath, title=None, resume=False):
self.file = None
self.resume = resume
self.title = '' if title == None else title
if fpath is not None:
if resume:
self.file = open(fpath, 'r')
name = self.file.readline()
self.names = name.rstrip().split('\t')
self.numbers = {}
for _, name in enumerate(self.names):
self.numbers[name] = []
for numbers in self.file:
numbers = numbers.rstrip().split('\t')
for i in range(0, len(numbers)):
self.numbers[self.names[i]].append(numbers[i])
self.file.close()
self.file = open(fpath, 'a')
else:
self.file = open(fpath, 'w')
def set_names(self, names):
if self.resume:
pass
# initialize numbers as empty list
self.numbers = {}
self.names = names
for _, name in enumerate(self.names):
self.file.write(name)
self.file.write('\t')
self.numbers[name] = []
self.file.write('\n')
self.file.flush()
def append(self, numbers):
assert len(self.names) == len(numbers), 'Numbers do not match names'
for index, num in enumerate(numbers):
self.file.write("{0:.6f}".format(num))
self.file.write('\t')
self.numbers[self.names[index]].append(num)
self.file.write('\n')
self.file.flush()
def plot(self, names=None):
names = self.names if names == None else names
numbers = self.numbers
for _, name in enumerate(names):
x = np.arange(len(numbers[name]))
plt.plot(x, np.asarray(numbers[name]))
plt.legend([self.title + '(' + name + ')' for name in names])
plt.grid(True)
def close(self):
if self.file is not None:
self.file.close()
def generate_final_report(model, opt, wandb):
from eval.meta_eval import meta_test
opt.n_shots = 1
train_loader, val_loader, meta_testloader, meta_valloader, _ = get_dataloaders(opt)
#validate
meta_val_acc, meta_val_std = meta_test(model, meta_valloader)
meta_val_acc_feat, meta_val_std_feat = meta_test(model, meta_valloader, use_logit=False)
#evaluate
meta_test_acc, meta_test_std = meta_test(model, meta_testloader)
meta_test_acc_feat, meta_test_std_feat = meta_test(model, meta_testloader, use_logit=False)
print('Meta Val Acc : {:.4f}, Meta Val std: {:.4f}'.format(meta_val_acc, meta_val_std))
print('Meta Val Acc (feat): {:.4f}, Meta Val std (feat): {:.4f}'.format(meta_val_acc_feat, meta_val_std_feat))
print('Meta Test Acc: {:.4f}, Meta Test std: {:.4f}'.format(meta_test_acc, meta_test_std))
print('Meta Test Acc (feat): {:.4f}, Meta Test std (feat): {:.4f}'.format(meta_test_acc_feat, meta_test_std_feat))
wandb.log({'Final Meta Test Acc @1': meta_test_acc,
'Final Meta Test std @1': meta_test_std,
'Final Meta Test Acc (feat) @1': meta_test_acc_feat,
'Final Meta Test std (feat) @1': meta_test_std_feat,
'Final Meta Val Acc @1': meta_val_acc,
'Final Meta Val std @1': meta_val_std,
'Final Meta Val Acc (feat) @1': meta_val_acc_feat,
'Final Meta Val std (feat) @1': meta_val_std_feat
})
opt.n_shots = 5
train_loader, val_loader, meta_testloader, meta_valloader, _ = get_dataloaders(opt)
#validate
meta_val_acc, meta_val_std = meta_test(model, meta_valloader)
meta_val_acc_feat, meta_val_std_feat = meta_test(model, meta_valloader, use_logit=False)
#evaluate
meta_test_acc, meta_test_std = meta_test(model, meta_testloader)
meta_test_acc_feat, meta_test_std_feat = meta_test(model, meta_testloader, use_logit=False)
print('Meta Val Acc : {:.4f}, Meta Val std: {:.4f}'.format(meta_val_acc, meta_val_std))
print('Meta Val Acc (feat): {:.4f}, Meta Val std (feat): {:.4f}'.format(meta_val_acc_feat, meta_val_std_feat))
print('Meta Test Acc: {:.4f}, Meta Test std: {:.4f}'.format(meta_test_acc, meta_test_std))
print('Meta Test Acc (feat): {:.4f}, Meta Test std (feat): {:.4f}'.format(meta_test_acc_feat, meta_test_std_feat))
wandb.log({'Final Meta Test Acc @5': meta_test_acc,
'Final Meta Test std @5': meta_test_std,
'Final Meta Test Acc (feat) @5': meta_test_acc_feat,
'Final Meta Test std (feat) @5': meta_test_std_feat,
'Final Meta Val Acc @5': meta_val_acc,
'Final Meta Val std @5': meta_val_std,
'Final Meta Val Acc (feat) @5': meta_val_acc_feat,
'Final Meta Val std (feat) @5': meta_val_std_feat
})