-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathssd.py
56 lines (47 loc) · 1.4 KB
/
ssd.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
import tensorflow as tf
conv1=tf.layers.conv2d(
inputs=x,
filters=64,
kernel_size=3,
padding="same",
strides=1,
#activation=tf.nn.relu,
kernel_initializer=tf.truncated_normal_initializer(stddev=0.01)
)
e=tf.layers.batch_normalization(conv1,training=True)
aconv1=tf.nn.relu(e, 'relu')
conv2=tf.layers.conv2d(
inputs=conv1,
filters=64,
kernel_size=3,
padding="same",
strides=1,
#activation=tf.nn.relu,
kernel_initializer=tf.truncated_normal_initializer(stddev=0.01)
)
e2=tf.layers.batch_normalization(conv2,training=True)
aconv2=tf.nn.relu(e2, 'relu')
pool2=tf.layers.max_pooling2d(inputs=aconv2, pool_size=[2, 2], strides=2)
conv4=tf.layers.conv2d(
inputs=pool2,
filters=128,
kernel_size=3,
padding="same",
strides=1,
#activation=tf.nn.relu,
kernel_initializer=tf.truncated_normal_initializer(stddev=0.01)
)
e3=tf.layers.batch_normalization(conv4,training=True)
aconv5=tf.nn.relu(e3, 'relu')
conv5=tf.layers.conv2d(
inputs=aconv5,
filters=128,
kernel_size=3,
padding="same",
strides=1,
#activation=tf.nn.relu,
kernel_initializer=tf.truncated_normal_initializer(stddev=0.01)
)
e4=tf.layers.batch_normalization(conv5,training=True)
aconv6=tf.nn.relu(e4, 'relu')
pool6=tf.layers.max_pooling2d(inputs=aconv6, pool_size=[2, 2], strides=2)