|
| 1 | +name: "ResNet" |
| 2 | +layer { |
| 3 | + name: "data" |
| 4 | + type: "Input" |
| 5 | + top: "data" |
| 6 | + input_param { shape: { dim: 1 dim: 3 dim: 224 dim: 224 } } |
| 7 | +} |
| 8 | + |
| 9 | +layer { |
| 10 | + name: "bn_data" |
| 11 | + type: "BatchNorm" |
| 12 | + bottom: "data" |
| 13 | + top: "data" |
| 14 | + batch_norm_param { |
| 15 | + use_global_stats: true |
| 16 | + eps: 2e-5 |
| 17 | + } |
| 18 | +} |
| 19 | + |
| 20 | +layer { |
| 21 | + name: "scale_bn_data" |
| 22 | + bottom: "data" |
| 23 | + top: "data" |
| 24 | + type: "Scale" |
| 25 | + scale_param { |
| 26 | + bias_term: true |
| 27 | + } |
| 28 | +} |
| 29 | + |
| 30 | +layer { |
| 31 | + name: "conv0" |
| 32 | + type: "Convolution" |
| 33 | + bottom: "data" |
| 34 | + top: "conv0" |
| 35 | + convolution_param { |
| 36 | + num_output: 64 |
| 37 | + kernel_size: 7 |
| 38 | + stride: 2 |
| 39 | + pad: 3 |
| 40 | + bias_term: false |
| 41 | + } |
| 42 | +} |
| 43 | + |
| 44 | +layer { |
| 45 | + name: "bn0" |
| 46 | + type: "BatchNorm" |
| 47 | + bottom: "conv0" |
| 48 | + top: "conv0" |
| 49 | + batch_norm_param { |
| 50 | + use_global_stats: true |
| 51 | + eps: 2e-5 |
| 52 | + } |
| 53 | +} |
| 54 | + |
| 55 | +layer { |
| 56 | + name: "scale_bn0" |
| 57 | + bottom: "conv0" |
| 58 | + top: "conv0" |
| 59 | + type: "Scale" |
| 60 | + scale_param { |
| 61 | + bias_term: true |
| 62 | + } |
| 63 | +} |
| 64 | + |
| 65 | +layer { |
| 66 | + name: "relu0" |
| 67 | + type: "ReLU" |
| 68 | + bottom: "conv0" |
| 69 | + top: "conv0" |
| 70 | +} |
| 71 | + |
| 72 | +layer { |
| 73 | + name: "pooling0" |
| 74 | + type: "Pooling" |
| 75 | + bottom: "conv0" |
| 76 | + top: "pooling0" |
| 77 | + pooling_param { |
| 78 | + pool: MAX |
| 79 | + kernel_size: 3 |
| 80 | + stride: 2 |
| 81 | + } |
| 82 | +} |
| 83 | + |
| 84 | +layer { |
| 85 | + name: "stage1_unit1_conv1" |
| 86 | + type: "Convolution" |
| 87 | + bottom: "pooling0" |
| 88 | + top: "stage1_unit1_conv1" |
| 89 | + convolution_param { |
| 90 | + num_output: 128 |
| 91 | + kernel_size: 1 |
| 92 | + stride: 1 |
| 93 | + pad: 0 |
| 94 | + bias_term: false |
| 95 | + } |
| 96 | +} |
| 97 | + |
| 98 | +layer { |
| 99 | + name: "stage1_unit1_bn1" |
| 100 | + type: "BatchNorm" |
| 101 | + bottom: "stage1_unit1_conv1" |
| 102 | + top: "stage1_unit1_conv1" |
| 103 | + batch_norm_param { |
| 104 | + use_global_stats: true |
| 105 | + eps: 2e-5 |
| 106 | + } |
| 107 | +} |
| 108 | + |
| 109 | +layer { |
| 110 | + name: "scale_stage1_unit1_bn1" |
| 111 | + bottom: "stage1_unit1_conv1" |
| 112 | + top: "stage1_unit1_conv1" |
| 113 | + type: "Scale" |
| 114 | + scale_param { |
| 115 | + bias_term: true |
| 116 | + } |
| 117 | +} |
| 118 | + |
| 119 | +layer { |
| 120 | + name: "stage1_unit1_relu1" |
| 121 | + type: "ReLU" |
| 122 | + bottom: "stage1_unit1_conv1" |
| 123 | + top: "stage1_unit1_conv1" |
| 124 | +} |
| 125 | + |
| 126 | +layer { |
| 127 | + name: "stage1_unit1_conv2" |
| 128 | + type: "Convolution" |
| 129 | + bottom: "stage1_unit1_conv1" |
| 130 | + top: "stage1_unit1_conv2" |
| 131 | + convolution_param { |
| 132 | + num_output: 128 |
| 133 | + kernel_size: 3 |
| 134 | + stride: 1 |
| 135 | + group: 32 |
| 136 | + pad: 1 |
| 137 | + bias_term: false |
| 138 | + } |
| 139 | +} |
| 140 | + |
| 141 | +layer { |
| 142 | + name: "stage1_unit1_bn2" |
| 143 | + type: "BatchNorm" |
| 144 | + bottom: "stage1_unit1_conv2" |
| 145 | + top: "stage1_unit1_conv2" |
| 146 | + batch_norm_param { |
| 147 | + use_global_stats: true |
| 148 | + eps: 2e-5 |
| 149 | + } |
| 150 | +} |
| 151 | + |
| 152 | +layer { |
| 153 | + name: "scale_stage1_unit1_bn2" |
| 154 | + bottom: "stage1_unit1_conv2" |
| 155 | + top: "stage1_unit1_conv2" |
| 156 | + type: "Scale" |
| 157 | + scale_param { |
| 158 | + bias_term: true |
| 159 | + } |
| 160 | +} |
| 161 | + |
| 162 | +layer { |
| 163 | + name: "stage1_unit1_relu2" |
| 164 | + type: "ReLU" |
| 165 | + bottom: "stage1_unit1_conv2" |
| 166 | + top: "stage1_unit1_conv2" |
| 167 | +} |
| 168 | + |
| 169 | +layer { |
| 170 | + name: "stage1_unit1_conv3" |
| 171 | + type: "Convolution" |
| 172 | + bottom: "stage1_unit1_conv2" |
| 173 | + top: "stage1_unit1_conv3" |
| 174 | + convolution_param { |
| 175 | + num_output: 256 |
| 176 | + kernel_size: 1 |
| 177 | + stride: 1 |
| 178 | + pad: 0 |
| 179 | + bias_term: false |
| 180 | + } |
| 181 | +} |
| 182 | + |
| 183 | +layer { |
| 184 | + name: "stage1_unit1_bn3" |
| 185 | + type: "BatchNorm" |
| 186 | + bottom: "stage1_unit1_conv3" |
| 187 | + top: "stage1_unit1_conv3" |
| 188 | + batch_norm_param { |
| 189 | + use_global_stats: true |
| 190 | + eps: 2e-5 |
| 191 | + } |
| 192 | +} |
| 193 | + |
| 194 | +layer { |
| 195 | + name: "scale_stage1_unit1_bn3" |
| 196 | + bottom: "stage1_unit1_conv3" |
| 197 | + top: "stage1_unit1_conv3" |
| 198 | + type: "Scale" |
| 199 | + scale_param { |
| 200 | + bias_term: true |
| 201 | + } |
| 202 | +} |
| 203 | + |
| 204 | +layer { |
| 205 | + name: "stage1_unit1_sc" |
| 206 | + type: "Convolution" |
| 207 | + bottom: "pooling0" |
| 208 | + top: "stage1_unit1_sc" |
| 209 | + convolution_param { |
| 210 | + num_output: 256 |
| 211 | + kernel_size: 1 |
| 212 | + stride: 1 |
| 213 | + pad: 0 |
| 214 | + bias_term: false |
| 215 | + } |
| 216 | +} |
| 217 | + |
| 218 | +layer { |
| 219 | + name: "stage1_unit1_sc_bn" |
| 220 | + type: "BatchNorm" |
| 221 | + bottom: "stage1_unit1_sc" |
| 222 | + top: "stage1_unit1_sc" |
| 223 | + batch_norm_param { |
| 224 | + use_global_stats: true |
| 225 | + eps: 2e-5 |
| 226 | + } |
| 227 | +} |
| 228 | + |
| 229 | +layer { |
| 230 | + name: "scale_stage1_unit1_sc_bn" |
| 231 | + bottom: "stage1_unit1_sc" |
| 232 | + top: "stage1_unit1_sc" |
| 233 | + type: "Scale" |
| 234 | + scale_param { |
| 235 | + bias_term: true |
| 236 | + } |
| 237 | +} |
| 238 | + |
| 239 | +layer { |
| 240 | + name: "stage1_unit1_plus" |
| 241 | + type: "Eltwise" |
| 242 | + bottom: "stage1_unit1_sc" |
| 243 | + bottom: "stage1_unit1_conv3" |
| 244 | + top: "stage1_unit1_plus" |
| 245 | + eltwise_param { |
| 246 | + operation: SUM |
| 247 | + } |
| 248 | +} |
| 249 | + |
| 250 | +layer { |
| 251 | + name: "stage1_unit1_relu" |
| 252 | + type: "ReLU" |
| 253 | + bottom: "stage1_unit1_plus" |
| 254 | + top: "stage1_unit1_plus" |
| 255 | +} |
| 256 | + |
| 257 | +layer { |
| 258 | + name: "stage1_unit2_conv1" |
| 259 | + type: "Convolution" |
| 260 | + bottom: "stage1_unit1_plus" |
| 261 | + top: "stage1_unit2_conv1" |
| 262 | + convolution_param { |
| 263 | + num_output: 128 |
| 264 | + kernel_size: 1 |
| 265 | + stride: 1 |
| 266 | + pad: 0 |
| 267 | + bias_term: false |
| 268 | + } |
| 269 | +} |
| 270 | + |
| 271 | +layer { |
| 272 | + name: "stage1_unit2_bn1" |
| 273 | + type: "BatchNorm" |
| 274 | + bottom: "stage1_unit2_conv1" |
| 275 | + top: "stage1_unit2_conv1" |
| 276 | + batch_norm_param { |
| 277 | + use_global_stats: true |
| 278 | + eps: 2e-5 |
| 279 | + } |
| 280 | +} |
| 281 | + |
| 282 | +layer { |
| 283 | + name: "scale_stage1_unit2_bn1" |
| 284 | + bottom: "stage1_unit2_conv1" |
| 285 | + top: "stage1_unit2_conv1" |
| 286 | + type: "Scale" |
| 287 | + scale_param { |
| 288 | + bias_term: true |
| 289 | + } |
| 290 | +} |
| 291 | + |
| 292 | +layer { |
| 293 | + name: "stage1_unit2_relu1" |
| 294 | + type: "ReLU" |
| 295 | + bottom: "stage1_unit2_conv1" |
| 296 | + top: "stage1_unit2_conv1" |
| 297 | +} |
| 298 | + |
| 299 | +layer { |
| 300 | + name: "stage1_unit2_conv2" |
| 301 | + type: "Convolution" |
| 302 | + bottom: "stage1_unit2_conv1" |
| 303 | + top: "stage1_unit2_conv2" |
| 304 | + convolution_param { |
| 305 | + num_output: 128 |
| 306 | + kernel_size: 3 |
| 307 | + stride: 1 |
| 308 | + group: 32 |
| 309 | + pad: 1 |
| 310 | + bias_term: false |
| 311 | + } |
| 312 | +} |
| 313 | + |
| 314 | +layer { |
| 315 | + name: "stage1_unit2_bn2" |
| 316 | + type: "BatchNorm" |
| 317 | + bottom: "stage1_unit2_conv2" |
| 318 | + top: "stage1_unit2_conv2" |
| 319 | + batch_norm_param { |
| 320 | + use_global_stats: true |
| 321 | + eps: 2e-5 |
| 322 | + } |
| 323 | +} |
| 324 | + |
| 325 | +layer { |
| 326 | + name: "scale_stage1_unit2_bn2" |
| 327 | + bottom: "stage1_unit2_conv2" |
| 328 | + top: "stage1_unit2_conv2" |
| 329 | + type: "Scale" |
| 330 | + scale_param { |
| 331 | + bias_term: true |
| 332 | + } |
| 333 | +} |
| 334 | + |
| 335 | +layer { |
| 336 | + name: "stage1_unit2_relu2" |
| 337 | + type: "ReLU" |
| 338 | + bottom: "stage1_unit2_conv2" |
| 339 | + top: "stage1_unit2_conv2" |
| 340 | +} |
| 341 | + |
| 342 | +layer { |
| 343 | + name: "stage1_unit2_conv3" |
| 344 | + type: "Convolution" |
| 345 | + bottom: "stage1_unit2_conv2" |
| 346 | + top: "stage1_unit2_conv3" |
| 347 | + convolution_param { |
| 348 | + num_output: 256 |
| 349 | + kernel_size: 1 |
| 350 | + stride: 1 |
| 351 | + pad: 0 |
| 352 | + bias_term: false |
| 353 | + } |
| 354 | +} |
| 355 | + |
| 356 | +layer { |
| 357 | + name: "stage1_unit2_bn3" |
| 358 | + type: "BatchNorm" |
| 359 | + bottom: "stage1_unit2_conv3" |
| 360 | + top: "stage1_unit2_conv3" |
| 361 | + batch_norm_param { |
| 362 | + use_global_stats: true |
| 363 | + eps: 2e-5 |
| 364 | + } |
| 365 | +} |
| 366 | + |
| 367 | +layer { |
| 368 | + name: "scale_stage1_unit2_bn3" |
| 369 | + bottom: "stage1_unit2_conv3" |
| 370 | + top: "stage1_unit2_conv3" |
| 371 | + type: "Scale" |
| 372 | + scale_param { |
| 373 | + bias_term: true |
| 374 | + } |
| 375 | +} |
| 376 | + |
| 377 | +layer { |
| 378 | + name: "stage1_unit2_plus" |
| 379 | + type: "Eltwise" |
| 380 | + bottom: "stage1_unit1_plus" |
| 381 | + bottom: "stage1_unit2_conv3" |
| 382 | + top: "stage1_unit2_plus" |
| 383 | + eltwise_param { |
| 384 | + operation: SUM |
| 385 | + } |
| 386 | +} |
| 387 | + |
| 388 | +layer { |
| 389 | + name: "stage1_unit2_relu" |
| 390 | + type: "ReLU" |
| 391 | + bottom: "stage1_unit2_plus" |
| 392 | + top: "stage1_unit2_plus" |
| 393 | +} |
| 394 | + |
| 395 | +layer { |
| 396 | + name: "stage1_unit3_conv1" |
| 397 | + type: "Convolution" |
| 398 | + bottom: "stage1_unit2_plus" |
| 399 | + top: "stage1_unit3_conv1" |
| 400 | + convolution_param { |
| 401 | + num_output: 128 |
| 402 | + kernel_size: 1 |
| 403 | + stride: 1 |
| 404 | + pad: 0 |
| 405 | + bias_term: false |
| 406 | + } |
| 407 | +} |
| 408 | + |
| 409 | +layer { |
| 410 | + name: "stage1_unit3_bn1" |
| 411 | + type: "BatchNorm" |
| 412 | + bottom: "stage1_unit3_conv1" |
| 413 | + top: "stage1_unit3_conv1" |
| 414 | + batch_norm_param { |
| 415 | + use_global_stats: true |
| 416 | + eps: 2e-5 |
| 417 | + } |
| 418 | +} |
| 419 | + |
| 420 | +layer { |
| 421 | + name: "scale_stage1_unit3_bn1" |
| 422 | + bottom: "stage1_unit3_conv1" |
| 423 | + top: "stage1_unit3_conv1" |
| 424 | + type: "Scale" |
| 425 | + scale_param { |
| 426 | + bias_term: true |
| 427 | + } |
| 428 | +} |
| 429 | + |
| 430 | +layer { |
| 431 | + name: "stage1_unit3_relu1" |
| 432 | + type: "ReLU" |
| 433 | + bottom: "stage1_unit3_conv1" |
| 434 | + top: "stage1_unit3_conv1" |
| 435 | +} |
| 436 | + |
| 437 | +layer { |
| 438 | + name: "stage1_unit3_conv2" |
| 439 | + type: "Convolution" |
| 440 | + bottom: "stage1_unit3_conv1" |
| 441 | + top: "stage1_unit3_conv2" |
| 442 | + convolution_param { |
| 443 | + num_output: 128 |
| 444 | + kernel_size: 3 |
| 445 | + stride: 1 |
| 446 | + group: 32 |
| 447 | + pad: 1 |
| 448 | + bias_term: false |
| 449 | + } |
| 450 | +} |
| 451 | + |
| 452 | +layer { |
| 453 | + name: "stage1_unit3_bn2" |
| 454 | + type: "BatchNorm" |
| 455 | + bottom: "stage1_unit3_conv2" |
| 456 | + top: "stage1_unit3_conv2" |
| 457 | + batch_norm_param { |
| 458 | + use_global_stats: true |
| 459 | + eps: 2e-5 |
| 460 | + } |
| 461 | +} |
| 462 | + |
| 463 | +layer { |
| 464 | + name: "scale_stage1_unit3_bn2" |
| 465 | + bottom: "stage1_unit3_conv2" |
| 466 | + top: "stage1_unit3_conv2" |
| 467 | + type: "Scale" |
| 468 | + scale_param { |
| 469 | + bias_term: true |
| 470 | + } |
| 471 | +} |
| 472 | + |
| 473 | +layer { |
| 474 | + name: "stage1_unit3_relu2" |
| 475 | + type: "ReLU" |
| 476 | + bottom: "stage1_unit3_conv2" |
| 477 | + top: "stage1_unit3_conv2" |
| 478 | +} |
| 479 | + |
| 480 | +layer { |
| 481 | + name: "stage1_unit3_conv3" |
| 482 | + type: "Convolution" |
| 483 | + bottom: "stage1_unit3_conv2" |
| 484 | + top: "stage1_unit3_conv3" |
| 485 | + convolution_param { |
| 486 | + num_output: 256 |
| 487 | + kernel_size: 1 |
| 488 | + stride: 1 |
| 489 | + pad: 0 |
| 490 | + bias_term: false |
| 491 | + } |
| 492 | +} |
| 493 | + |
| 494 | +layer { |
| 495 | + name: "stage1_unit3_bn3" |
| 496 | + type: "BatchNorm" |
| 497 | + bottom: "stage1_unit3_conv3" |
| 498 | + top: "stage1_unit3_conv3" |
| 499 | + batch_norm_param { |
| 500 | + use_global_stats: true |
| 501 | + eps: 2e-5 |
| 502 | + } |
| 503 | +} |
| 504 | + |
| 505 | +layer { |
| 506 | + name: "scale_stage1_unit3_bn3" |
| 507 | + bottom: "stage1_unit3_conv3" |
| 508 | + top: "stage1_unit3_conv3" |
| 509 | + type: "Scale" |
| 510 | + scale_param { |
| 511 | + bias_term: true |
| 512 | + } |
| 513 | +} |
| 514 | + |
| 515 | +layer { |
| 516 | + name: "stage1_unit3_plus" |
| 517 | + type: "Eltwise" |
| 518 | + bottom: "stage1_unit2_plus" |
| 519 | + bottom: "stage1_unit3_conv3" |
| 520 | + top: "stage1_unit3_plus" |
| 521 | + eltwise_param { |
| 522 | + operation: SUM |
| 523 | + } |
| 524 | +} |
| 525 | + |
| 526 | +layer { |
| 527 | + name: "stage1_unit3_relu" |
| 528 | + type: "ReLU" |
| 529 | + bottom: "stage1_unit3_plus" |
| 530 | + top: "stage1_unit3_plus" |
| 531 | +} |
| 532 | + |
| 533 | +layer { |
| 534 | + name: "stage2_unit1_conv1" |
| 535 | + type: "Convolution" |
| 536 | + bottom: "stage1_unit3_plus" |
| 537 | + top: "stage2_unit1_conv1" |
| 538 | + convolution_param { |
| 539 | + num_output: 256 |
| 540 | + kernel_size: 1 |
| 541 | + stride: 1 |
| 542 | + pad: 0 |
| 543 | + bias_term: false |
| 544 | + } |
| 545 | +} |
| 546 | + |
| 547 | +layer { |
| 548 | + name: "stage2_unit1_bn1" |
| 549 | + type: "BatchNorm" |
| 550 | + bottom: "stage2_unit1_conv1" |
| 551 | + top: "stage2_unit1_conv1" |
| 552 | + batch_norm_param { |
| 553 | + use_global_stats: true |
| 554 | + eps: 2e-5 |
| 555 | + } |
| 556 | +} |
| 557 | + |
| 558 | +layer { |
| 559 | + name: "scale_stage2_unit1_bn1" |
| 560 | + bottom: "stage2_unit1_conv1" |
| 561 | + top: "stage2_unit1_conv1" |
| 562 | + type: "Scale" |
| 563 | + scale_param { |
| 564 | + bias_term: true |
| 565 | + } |
| 566 | +} |
| 567 | + |
| 568 | +layer { |
| 569 | + name: "stage2_unit1_relu1" |
| 570 | + type: "ReLU" |
| 571 | + bottom: "stage2_unit1_conv1" |
| 572 | + top: "stage2_unit1_conv1" |
| 573 | +} |
| 574 | + |
| 575 | +layer { |
| 576 | + name: "stage2_unit1_conv2" |
| 577 | + type: "Convolution" |
| 578 | + bottom: "stage2_unit1_conv1" |
| 579 | + top: "stage2_unit1_conv2" |
| 580 | + convolution_param { |
| 581 | + num_output: 256 |
| 582 | + kernel_size: 3 |
| 583 | + stride: 2 |
| 584 | + group: 32 |
| 585 | + pad: 1 |
| 586 | + bias_term: false |
| 587 | + } |
| 588 | +} |
| 589 | + |
| 590 | +layer { |
| 591 | + name: "stage2_unit1_bn2" |
| 592 | + type: "BatchNorm" |
| 593 | + bottom: "stage2_unit1_conv2" |
| 594 | + top: "stage2_unit1_conv2" |
| 595 | + batch_norm_param { |
| 596 | + use_global_stats: true |
| 597 | + eps: 2e-5 |
| 598 | + } |
| 599 | +} |
| 600 | + |
| 601 | +layer { |
| 602 | + name: "scale_stage2_unit1_bn2" |
| 603 | + bottom: "stage2_unit1_conv2" |
| 604 | + top: "stage2_unit1_conv2" |
| 605 | + type: "Scale" |
| 606 | + scale_param { |
| 607 | + bias_term: true |
| 608 | + } |
| 609 | +} |
| 610 | + |
| 611 | +layer { |
| 612 | + name: "stage2_unit1_relu2" |
| 613 | + type: "ReLU" |
| 614 | + bottom: "stage2_unit1_conv2" |
| 615 | + top: "stage2_unit1_conv2" |
| 616 | +} |
| 617 | + |
| 618 | +layer { |
| 619 | + name: "stage2_unit1_conv3" |
| 620 | + type: "Convolution" |
| 621 | + bottom: "stage2_unit1_conv2" |
| 622 | + top: "stage2_unit1_conv3" |
| 623 | + convolution_param { |
| 624 | + num_output: 512 |
| 625 | + kernel_size: 1 |
| 626 | + stride: 1 |
| 627 | + pad: 0 |
| 628 | + bias_term: false |
| 629 | + } |
| 630 | +} |
| 631 | + |
| 632 | +layer { |
| 633 | + name: "stage2_unit1_bn3" |
| 634 | + type: "BatchNorm" |
| 635 | + bottom: "stage2_unit1_conv3" |
| 636 | + top: "stage2_unit1_conv3" |
| 637 | + batch_norm_param { |
| 638 | + use_global_stats: true |
| 639 | + eps: 2e-5 |
| 640 | + } |
| 641 | +} |
| 642 | + |
| 643 | +layer { |
| 644 | + name: "scale_stage2_unit1_bn3" |
| 645 | + bottom: "stage2_unit1_conv3" |
| 646 | + top: "stage2_unit1_conv3" |
| 647 | + type: "Scale" |
| 648 | + scale_param { |
| 649 | + bias_term: true |
| 650 | + } |
| 651 | +} |
| 652 | + |
| 653 | +layer { |
| 654 | + name: "stage2_unit1_sc" |
| 655 | + type: "Convolution" |
| 656 | + bottom: "stage1_unit3_plus" |
| 657 | + top: "stage2_unit1_sc" |
| 658 | + convolution_param { |
| 659 | + num_output: 512 |
| 660 | + kernel_size: 1 |
| 661 | + stride: 2 |
| 662 | + pad: 0 |
| 663 | + bias_term: false |
| 664 | + } |
| 665 | +} |
| 666 | + |
| 667 | +layer { |
| 668 | + name: "stage2_unit1_sc_bn" |
| 669 | + type: "BatchNorm" |
| 670 | + bottom: "stage2_unit1_sc" |
| 671 | + top: "stage2_unit1_sc" |
| 672 | + batch_norm_param { |
| 673 | + use_global_stats: true |
| 674 | + eps: 2e-5 |
| 675 | + } |
| 676 | +} |
| 677 | + |
| 678 | +layer { |
| 679 | + name: "scale_stage2_unit1_sc_bn" |
| 680 | + bottom: "stage2_unit1_sc" |
| 681 | + top: "stage2_unit1_sc" |
| 682 | + type: "Scale" |
| 683 | + scale_param { |
| 684 | + bias_term: true |
| 685 | + } |
| 686 | +} |
| 687 | + |
| 688 | +layer { |
| 689 | + name: "stage2_unit1_plus" |
| 690 | + type: "Eltwise" |
| 691 | + bottom: "stage2_unit1_sc" |
| 692 | + bottom: "stage2_unit1_conv3" |
| 693 | + top: "stage2_unit1_plus" |
| 694 | + eltwise_param { |
| 695 | + operation: SUM |
| 696 | + } |
| 697 | +} |
| 698 | + |
| 699 | +layer { |
| 700 | + name: "stage2_unit1_relu" |
| 701 | + type: "ReLU" |
| 702 | + bottom: "stage2_unit1_plus" |
| 703 | + top: "stage2_unit1_plus" |
| 704 | +} |
| 705 | + |
| 706 | +layer { |
| 707 | + name: "stage2_unit2_conv1" |
| 708 | + type: "Convolution" |
| 709 | + bottom: "stage2_unit1_plus" |
| 710 | + top: "stage2_unit2_conv1" |
| 711 | + convolution_param { |
| 712 | + num_output: 256 |
| 713 | + kernel_size: 1 |
| 714 | + stride: 1 |
| 715 | + pad: 0 |
| 716 | + bias_term: false |
| 717 | + } |
| 718 | +} |
| 719 | + |
| 720 | +layer { |
| 721 | + name: "stage2_unit2_bn1" |
| 722 | + type: "BatchNorm" |
| 723 | + bottom: "stage2_unit2_conv1" |
| 724 | + top: "stage2_unit2_conv1" |
| 725 | + batch_norm_param { |
| 726 | + use_global_stats: true |
| 727 | + eps: 2e-5 |
| 728 | + } |
| 729 | +} |
| 730 | + |
| 731 | +layer { |
| 732 | + name: "scale_stage2_unit2_bn1" |
| 733 | + bottom: "stage2_unit2_conv1" |
| 734 | + top: "stage2_unit2_conv1" |
| 735 | + type: "Scale" |
| 736 | + scale_param { |
| 737 | + bias_term: true |
| 738 | + } |
| 739 | +} |
| 740 | + |
| 741 | +layer { |
| 742 | + name: "stage2_unit2_relu1" |
| 743 | + type: "ReLU" |
| 744 | + bottom: "stage2_unit2_conv1" |
| 745 | + top: "stage2_unit2_conv1" |
| 746 | +} |
| 747 | + |
| 748 | +layer { |
| 749 | + name: "stage2_unit2_conv2" |
| 750 | + type: "Convolution" |
| 751 | + bottom: "stage2_unit2_conv1" |
| 752 | + top: "stage2_unit2_conv2" |
| 753 | + convolution_param { |
| 754 | + num_output: 256 |
| 755 | + kernel_size: 3 |
| 756 | + stride: 1 |
| 757 | + group: 32 |
| 758 | + pad: 1 |
| 759 | + bias_term: false |
| 760 | + } |
| 761 | +} |
| 762 | + |
| 763 | +layer { |
| 764 | + name: "stage2_unit2_bn2" |
| 765 | + type: "BatchNorm" |
| 766 | + bottom: "stage2_unit2_conv2" |
| 767 | + top: "stage2_unit2_conv2" |
| 768 | + batch_norm_param { |
| 769 | + use_global_stats: true |
| 770 | + eps: 2e-5 |
| 771 | + } |
| 772 | +} |
| 773 | + |
| 774 | +layer { |
| 775 | + name: "scale_stage2_unit2_bn2" |
| 776 | + bottom: "stage2_unit2_conv2" |
| 777 | + top: "stage2_unit2_conv2" |
| 778 | + type: "Scale" |
| 779 | + scale_param { |
| 780 | + bias_term: true |
| 781 | + } |
| 782 | +} |
| 783 | + |
| 784 | +layer { |
| 785 | + name: "stage2_unit2_relu2" |
| 786 | + type: "ReLU" |
| 787 | + bottom: "stage2_unit2_conv2" |
| 788 | + top: "stage2_unit2_conv2" |
| 789 | +} |
| 790 | + |
| 791 | +layer { |
| 792 | + name: "stage2_unit2_conv3" |
| 793 | + type: "Convolution" |
| 794 | + bottom: "stage2_unit2_conv2" |
| 795 | + top: "stage2_unit2_conv3" |
| 796 | + convolution_param { |
| 797 | + num_output: 512 |
| 798 | + kernel_size: 1 |
| 799 | + stride: 1 |
| 800 | + pad: 0 |
| 801 | + bias_term: false |
| 802 | + } |
| 803 | +} |
| 804 | + |
| 805 | +layer { |
| 806 | + name: "stage2_unit2_bn3" |
| 807 | + type: "BatchNorm" |
| 808 | + bottom: "stage2_unit2_conv3" |
| 809 | + top: "stage2_unit2_conv3" |
| 810 | + batch_norm_param { |
| 811 | + use_global_stats: true |
| 812 | + eps: 2e-5 |
| 813 | + } |
| 814 | +} |
| 815 | + |
| 816 | +layer { |
| 817 | + name: "scale_stage2_unit2_bn3" |
| 818 | + bottom: "stage2_unit2_conv3" |
| 819 | + top: "stage2_unit2_conv3" |
| 820 | + type: "Scale" |
| 821 | + scale_param { |
| 822 | + bias_term: true |
| 823 | + } |
| 824 | +} |
| 825 | + |
| 826 | +layer { |
| 827 | + name: "stage2_unit2_plus" |
| 828 | + type: "Eltwise" |
| 829 | + bottom: "stage2_unit1_plus" |
| 830 | + bottom: "stage2_unit2_conv3" |
| 831 | + top: "stage2_unit2_plus" |
| 832 | + eltwise_param { |
| 833 | + operation: SUM |
| 834 | + } |
| 835 | +} |
| 836 | + |
| 837 | +layer { |
| 838 | + name: "stage2_unit2_relu" |
| 839 | + type: "ReLU" |
| 840 | + bottom: "stage2_unit2_plus" |
| 841 | + top: "stage2_unit2_plus" |
| 842 | +} |
| 843 | + |
| 844 | +layer { |
| 845 | + name: "stage2_unit3_conv1" |
| 846 | + type: "Convolution" |
| 847 | + bottom: "stage2_unit2_plus" |
| 848 | + top: "stage2_unit3_conv1" |
| 849 | + convolution_param { |
| 850 | + num_output: 256 |
| 851 | + kernel_size: 1 |
| 852 | + stride: 1 |
| 853 | + pad: 0 |
| 854 | + bias_term: false |
| 855 | + } |
| 856 | +} |
| 857 | + |
| 858 | +layer { |
| 859 | + name: "stage2_unit3_bn1" |
| 860 | + type: "BatchNorm" |
| 861 | + bottom: "stage2_unit3_conv1" |
| 862 | + top: "stage2_unit3_conv1" |
| 863 | + batch_norm_param { |
| 864 | + use_global_stats: true |
| 865 | + eps: 2e-5 |
| 866 | + } |
| 867 | +} |
| 868 | + |
| 869 | +layer { |
| 870 | + name: "scale_stage2_unit3_bn1" |
| 871 | + bottom: "stage2_unit3_conv1" |
| 872 | + top: "stage2_unit3_conv1" |
| 873 | + type: "Scale" |
| 874 | + scale_param { |
| 875 | + bias_term: true |
| 876 | + } |
| 877 | +} |
| 878 | + |
| 879 | +layer { |
| 880 | + name: "stage2_unit3_relu1" |
| 881 | + type: "ReLU" |
| 882 | + bottom: "stage2_unit3_conv1" |
| 883 | + top: "stage2_unit3_conv1" |
| 884 | +} |
| 885 | + |
| 886 | +layer { |
| 887 | + name: "stage2_unit3_conv2" |
| 888 | + type: "Convolution" |
| 889 | + bottom: "stage2_unit3_conv1" |
| 890 | + top: "stage2_unit3_conv2" |
| 891 | + convolution_param { |
| 892 | + num_output: 256 |
| 893 | + kernel_size: 3 |
| 894 | + stride: 1 |
| 895 | + group: 32 |
| 896 | + pad: 1 |
| 897 | + bias_term: false |
| 898 | + } |
| 899 | +} |
| 900 | + |
| 901 | +layer { |
| 902 | + name: "stage2_unit3_bn2" |
| 903 | + type: "BatchNorm" |
| 904 | + bottom: "stage2_unit3_conv2" |
| 905 | + top: "stage2_unit3_conv2" |
| 906 | + batch_norm_param { |
| 907 | + use_global_stats: true |
| 908 | + eps: 2e-5 |
| 909 | + } |
| 910 | +} |
| 911 | + |
| 912 | +layer { |
| 913 | + name: "scale_stage2_unit3_bn2" |
| 914 | + bottom: "stage2_unit3_conv2" |
| 915 | + top: "stage2_unit3_conv2" |
| 916 | + type: "Scale" |
| 917 | + scale_param { |
| 918 | + bias_term: true |
| 919 | + } |
| 920 | +} |
| 921 | + |
| 922 | +layer { |
| 923 | + name: "stage2_unit3_relu2" |
| 924 | + type: "ReLU" |
| 925 | + bottom: "stage2_unit3_conv2" |
| 926 | + top: "stage2_unit3_conv2" |
| 927 | +} |
| 928 | + |
| 929 | +layer { |
| 930 | + name: "stage2_unit3_conv3" |
| 931 | + type: "Convolution" |
| 932 | + bottom: "stage2_unit3_conv2" |
| 933 | + top: "stage2_unit3_conv3" |
| 934 | + convolution_param { |
| 935 | + num_output: 512 |
| 936 | + kernel_size: 1 |
| 937 | + stride: 1 |
| 938 | + pad: 0 |
| 939 | + bias_term: false |
| 940 | + } |
| 941 | +} |
| 942 | + |
| 943 | +layer { |
| 944 | + name: "stage2_unit3_bn3" |
| 945 | + type: "BatchNorm" |
| 946 | + bottom: "stage2_unit3_conv3" |
| 947 | + top: "stage2_unit3_conv3" |
| 948 | + batch_norm_param { |
| 949 | + use_global_stats: true |
| 950 | + eps: 2e-5 |
| 951 | + } |
| 952 | +} |
| 953 | + |
| 954 | +layer { |
| 955 | + name: "scale_stage2_unit3_bn3" |
| 956 | + bottom: "stage2_unit3_conv3" |
| 957 | + top: "stage2_unit3_conv3" |
| 958 | + type: "Scale" |
| 959 | + scale_param { |
| 960 | + bias_term: true |
| 961 | + } |
| 962 | +} |
| 963 | + |
| 964 | +layer { |
| 965 | + name: "stage2_unit3_plus" |
| 966 | + type: "Eltwise" |
| 967 | + bottom: "stage2_unit2_plus" |
| 968 | + bottom: "stage2_unit3_conv3" |
| 969 | + top: "stage2_unit3_plus" |
| 970 | + eltwise_param { |
| 971 | + operation: SUM |
| 972 | + } |
| 973 | +} |
| 974 | + |
| 975 | +layer { |
| 976 | + name: "stage2_unit3_relu" |
| 977 | + type: "ReLU" |
| 978 | + bottom: "stage2_unit3_plus" |
| 979 | + top: "stage2_unit3_plus" |
| 980 | +} |
| 981 | + |
| 982 | +layer { |
| 983 | + name: "stage2_unit4_conv1" |
| 984 | + type: "Convolution" |
| 985 | + bottom: "stage2_unit3_plus" |
| 986 | + top: "stage2_unit4_conv1" |
| 987 | + convolution_param { |
| 988 | + num_output: 256 |
| 989 | + kernel_size: 1 |
| 990 | + stride: 1 |
| 991 | + pad: 0 |
| 992 | + bias_term: false |
| 993 | + } |
| 994 | +} |
| 995 | + |
| 996 | +layer { |
| 997 | + name: "stage2_unit4_bn1" |
| 998 | + type: "BatchNorm" |
| 999 | + bottom: "stage2_unit4_conv1" |
| 1000 | + top: "stage2_unit4_conv1" |
| 1001 | + batch_norm_param { |
| 1002 | + use_global_stats: true |
| 1003 | + eps: 2e-5 |
| 1004 | + } |
| 1005 | +} |
| 1006 | + |
| 1007 | +layer { |
| 1008 | + name: "scale_stage2_unit4_bn1" |
| 1009 | + bottom: "stage2_unit4_conv1" |
| 1010 | + top: "stage2_unit4_conv1" |
| 1011 | + type: "Scale" |
| 1012 | + scale_param { |
| 1013 | + bias_term: true |
| 1014 | + } |
| 1015 | +} |
| 1016 | + |
| 1017 | +layer { |
| 1018 | + name: "stage2_unit4_relu1" |
| 1019 | + type: "ReLU" |
| 1020 | + bottom: "stage2_unit4_conv1" |
| 1021 | + top: "stage2_unit4_conv1" |
| 1022 | +} |
| 1023 | + |
| 1024 | +layer { |
| 1025 | + name: "stage2_unit4_conv2" |
| 1026 | + type: "Convolution" |
| 1027 | + bottom: "stage2_unit4_conv1" |
| 1028 | + top: "stage2_unit4_conv2" |
| 1029 | + convolution_param { |
| 1030 | + num_output: 256 |
| 1031 | + kernel_size: 3 |
| 1032 | + stride: 1 |
| 1033 | + group: 32 |
| 1034 | + pad: 1 |
| 1035 | + bias_term: false |
| 1036 | + } |
| 1037 | +} |
| 1038 | + |
| 1039 | +layer { |
| 1040 | + name: "stage2_unit4_bn2" |
| 1041 | + type: "BatchNorm" |
| 1042 | + bottom: "stage2_unit4_conv2" |
| 1043 | + top: "stage2_unit4_conv2" |
| 1044 | + batch_norm_param { |
| 1045 | + use_global_stats: true |
| 1046 | + eps: 2e-5 |
| 1047 | + } |
| 1048 | +} |
| 1049 | + |
| 1050 | +layer { |
| 1051 | + name: "scale_stage2_unit4_bn2" |
| 1052 | + bottom: "stage2_unit4_conv2" |
| 1053 | + top: "stage2_unit4_conv2" |
| 1054 | + type: "Scale" |
| 1055 | + scale_param { |
| 1056 | + bias_term: true |
| 1057 | + } |
| 1058 | +} |
| 1059 | + |
| 1060 | +layer { |
| 1061 | + name: "stage2_unit4_relu2" |
| 1062 | + type: "ReLU" |
| 1063 | + bottom: "stage2_unit4_conv2" |
| 1064 | + top: "stage2_unit4_conv2" |
| 1065 | +} |
| 1066 | + |
| 1067 | +layer { |
| 1068 | + name: "stage2_unit4_conv3" |
| 1069 | + type: "Convolution" |
| 1070 | + bottom: "stage2_unit4_conv2" |
| 1071 | + top: "stage2_unit4_conv3" |
| 1072 | + convolution_param { |
| 1073 | + num_output: 512 |
| 1074 | + kernel_size: 1 |
| 1075 | + stride: 1 |
| 1076 | + pad: 0 |
| 1077 | + bias_term: false |
| 1078 | + } |
| 1079 | +} |
| 1080 | + |
| 1081 | +layer { |
| 1082 | + name: "stage2_unit4_bn3" |
| 1083 | + type: "BatchNorm" |
| 1084 | + bottom: "stage2_unit4_conv3" |
| 1085 | + top: "stage2_unit4_conv3" |
| 1086 | + batch_norm_param { |
| 1087 | + use_global_stats: true |
| 1088 | + eps: 2e-5 |
| 1089 | + } |
| 1090 | +} |
| 1091 | + |
| 1092 | +layer { |
| 1093 | + name: "scale_stage2_unit4_bn3" |
| 1094 | + bottom: "stage2_unit4_conv3" |
| 1095 | + top: "stage2_unit4_conv3" |
| 1096 | + type: "Scale" |
| 1097 | + scale_param { |
| 1098 | + bias_term: true |
| 1099 | + } |
| 1100 | +} |
| 1101 | + |
| 1102 | +layer { |
| 1103 | + name: "stage2_unit4_plus" |
| 1104 | + type: "Eltwise" |
| 1105 | + bottom: "stage2_unit3_plus" |
| 1106 | + bottom: "stage2_unit4_conv3" |
| 1107 | + top: "stage2_unit4_plus" |
| 1108 | + eltwise_param { |
| 1109 | + operation: SUM |
| 1110 | + } |
| 1111 | +} |
| 1112 | + |
| 1113 | +layer { |
| 1114 | + name: "stage2_unit4_relu" |
| 1115 | + type: "ReLU" |
| 1116 | + bottom: "stage2_unit4_plus" |
| 1117 | + top: "stage2_unit4_plus" |
| 1118 | +} |
| 1119 | + |
| 1120 | +layer { |
| 1121 | + name: "stage3_unit1_conv1" |
| 1122 | + type: "Convolution" |
| 1123 | + bottom: "stage2_unit4_plus" |
| 1124 | + top: "stage3_unit1_conv1" |
| 1125 | + convolution_param { |
| 1126 | + num_output: 512 |
| 1127 | + kernel_size: 1 |
| 1128 | + stride: 1 |
| 1129 | + pad: 0 |
| 1130 | + bias_term: false |
| 1131 | + } |
| 1132 | +} |
| 1133 | + |
| 1134 | +layer { |
| 1135 | + name: "stage3_unit1_bn1" |
| 1136 | + type: "BatchNorm" |
| 1137 | + bottom: "stage3_unit1_conv1" |
| 1138 | + top: "stage3_unit1_conv1" |
| 1139 | + batch_norm_param { |
| 1140 | + use_global_stats: true |
| 1141 | + eps: 2e-5 |
| 1142 | + } |
| 1143 | +} |
| 1144 | + |
| 1145 | +layer { |
| 1146 | + name: "scale_stage3_unit1_bn1" |
| 1147 | + bottom: "stage3_unit1_conv1" |
| 1148 | + top: "stage3_unit1_conv1" |
| 1149 | + type: "Scale" |
| 1150 | + scale_param { |
| 1151 | + bias_term: true |
| 1152 | + } |
| 1153 | +} |
| 1154 | + |
| 1155 | +layer { |
| 1156 | + name: "stage3_unit1_relu1" |
| 1157 | + type: "ReLU" |
| 1158 | + bottom: "stage3_unit1_conv1" |
| 1159 | + top: "stage3_unit1_conv1" |
| 1160 | +} |
| 1161 | + |
| 1162 | +layer { |
| 1163 | + name: "stage3_unit1_conv2" |
| 1164 | + type: "Convolution" |
| 1165 | + bottom: "stage3_unit1_conv1" |
| 1166 | + top: "stage3_unit1_conv2" |
| 1167 | + convolution_param { |
| 1168 | + num_output: 512 |
| 1169 | + kernel_size: 3 |
| 1170 | + stride: 2 |
| 1171 | + group: 32 |
| 1172 | + pad: 1 |
| 1173 | + bias_term: false |
| 1174 | + } |
| 1175 | +} |
| 1176 | + |
| 1177 | +layer { |
| 1178 | + name: "stage3_unit1_bn2" |
| 1179 | + type: "BatchNorm" |
| 1180 | + bottom: "stage3_unit1_conv2" |
| 1181 | + top: "stage3_unit1_conv2" |
| 1182 | + batch_norm_param { |
| 1183 | + use_global_stats: true |
| 1184 | + eps: 2e-5 |
| 1185 | + } |
| 1186 | +} |
| 1187 | + |
| 1188 | +layer { |
| 1189 | + name: "scale_stage3_unit1_bn2" |
| 1190 | + bottom: "stage3_unit1_conv2" |
| 1191 | + top: "stage3_unit1_conv2" |
| 1192 | + type: "Scale" |
| 1193 | + scale_param { |
| 1194 | + bias_term: true |
| 1195 | + } |
| 1196 | +} |
| 1197 | + |
| 1198 | +layer { |
| 1199 | + name: "stage3_unit1_relu2" |
| 1200 | + type: "ReLU" |
| 1201 | + bottom: "stage3_unit1_conv2" |
| 1202 | + top: "stage3_unit1_conv2" |
| 1203 | +} |
| 1204 | + |
| 1205 | +layer { |
| 1206 | + name: "stage3_unit1_conv3" |
| 1207 | + type: "Convolution" |
| 1208 | + bottom: "stage3_unit1_conv2" |
| 1209 | + top: "stage3_unit1_conv3" |
| 1210 | + convolution_param { |
| 1211 | + num_output: 1024 |
| 1212 | + kernel_size: 1 |
| 1213 | + stride: 1 |
| 1214 | + pad: 0 |
| 1215 | + bias_term: false |
| 1216 | + } |
| 1217 | +} |
| 1218 | + |
| 1219 | +layer { |
| 1220 | + name: "stage3_unit1_bn3" |
| 1221 | + type: "BatchNorm" |
| 1222 | + bottom: "stage3_unit1_conv3" |
| 1223 | + top: "stage3_unit1_conv3" |
| 1224 | + batch_norm_param { |
| 1225 | + use_global_stats: true |
| 1226 | + eps: 2e-5 |
| 1227 | + } |
| 1228 | +} |
| 1229 | + |
| 1230 | +layer { |
| 1231 | + name: "scale_stage3_unit1_bn3" |
| 1232 | + bottom: "stage3_unit1_conv3" |
| 1233 | + top: "stage3_unit1_conv3" |
| 1234 | + type: "Scale" |
| 1235 | + scale_param { |
| 1236 | + bias_term: true |
| 1237 | + } |
| 1238 | +} |
| 1239 | + |
| 1240 | +layer { |
| 1241 | + name: "stage3_unit1_sc" |
| 1242 | + type: "Convolution" |
| 1243 | + bottom: "stage2_unit4_plus" |
| 1244 | + top: "stage3_unit1_sc" |
| 1245 | + convolution_param { |
| 1246 | + num_output: 1024 |
| 1247 | + kernel_size: 1 |
| 1248 | + stride: 2 |
| 1249 | + pad: 0 |
| 1250 | + bias_term: false |
| 1251 | + } |
| 1252 | +} |
| 1253 | + |
| 1254 | +layer { |
| 1255 | + name: "stage3_unit1_sc_bn" |
| 1256 | + type: "BatchNorm" |
| 1257 | + bottom: "stage3_unit1_sc" |
| 1258 | + top: "stage3_unit1_sc" |
| 1259 | + batch_norm_param { |
| 1260 | + use_global_stats: true |
| 1261 | + eps: 2e-5 |
| 1262 | + } |
| 1263 | +} |
| 1264 | + |
| 1265 | +layer { |
| 1266 | + name: "scale_stage3_unit1_sc_bn" |
| 1267 | + bottom: "stage3_unit1_sc" |
| 1268 | + top: "stage3_unit1_sc" |
| 1269 | + type: "Scale" |
| 1270 | + scale_param { |
| 1271 | + bias_term: true |
| 1272 | + } |
| 1273 | +} |
| 1274 | + |
| 1275 | +layer { |
| 1276 | + name: "stage3_unit1_plus" |
| 1277 | + type: "Eltwise" |
| 1278 | + bottom: "stage3_unit1_sc" |
| 1279 | + bottom: "stage3_unit1_conv3" |
| 1280 | + top: "stage3_unit1_plus" |
| 1281 | + eltwise_param { |
| 1282 | + operation: SUM |
| 1283 | + } |
| 1284 | +} |
| 1285 | + |
| 1286 | +layer { |
| 1287 | + name: "stage3_unit1_relu" |
| 1288 | + type: "ReLU" |
| 1289 | + bottom: "stage3_unit1_plus" |
| 1290 | + top: "stage3_unit1_plus" |
| 1291 | +} |
| 1292 | + |
| 1293 | +layer { |
| 1294 | + name: "stage3_unit2_conv1" |
| 1295 | + type: "Convolution" |
| 1296 | + bottom: "stage3_unit1_plus" |
| 1297 | + top: "stage3_unit2_conv1" |
| 1298 | + convolution_param { |
| 1299 | + num_output: 512 |
| 1300 | + kernel_size: 1 |
| 1301 | + stride: 1 |
| 1302 | + pad: 0 |
| 1303 | + bias_term: false |
| 1304 | + } |
| 1305 | +} |
| 1306 | + |
| 1307 | +layer { |
| 1308 | + name: "stage3_unit2_bn1" |
| 1309 | + type: "BatchNorm" |
| 1310 | + bottom: "stage3_unit2_conv1" |
| 1311 | + top: "stage3_unit2_conv1" |
| 1312 | + batch_norm_param { |
| 1313 | + use_global_stats: true |
| 1314 | + eps: 2e-5 |
| 1315 | + } |
| 1316 | +} |
| 1317 | + |
| 1318 | +layer { |
| 1319 | + name: "scale_stage3_unit2_bn1" |
| 1320 | + bottom: "stage3_unit2_conv1" |
| 1321 | + top: "stage3_unit2_conv1" |
| 1322 | + type: "Scale" |
| 1323 | + scale_param { |
| 1324 | + bias_term: true |
| 1325 | + } |
| 1326 | +} |
| 1327 | + |
| 1328 | +layer { |
| 1329 | + name: "stage3_unit2_relu1" |
| 1330 | + type: "ReLU" |
| 1331 | + bottom: "stage3_unit2_conv1" |
| 1332 | + top: "stage3_unit2_conv1" |
| 1333 | +} |
| 1334 | + |
| 1335 | +layer { |
| 1336 | + name: "stage3_unit2_conv2" |
| 1337 | + type: "Convolution" |
| 1338 | + bottom: "stage3_unit2_conv1" |
| 1339 | + top: "stage3_unit2_conv2" |
| 1340 | + convolution_param { |
| 1341 | + num_output: 512 |
| 1342 | + kernel_size: 3 |
| 1343 | + stride: 1 |
| 1344 | + group: 32 |
| 1345 | + pad: 1 |
| 1346 | + bias_term: false |
| 1347 | + } |
| 1348 | +} |
| 1349 | + |
| 1350 | +layer { |
| 1351 | + name: "stage3_unit2_bn2" |
| 1352 | + type: "BatchNorm" |
| 1353 | + bottom: "stage3_unit2_conv2" |
| 1354 | + top: "stage3_unit2_conv2" |
| 1355 | + batch_norm_param { |
| 1356 | + use_global_stats: true |
| 1357 | + eps: 2e-5 |
| 1358 | + } |
| 1359 | +} |
| 1360 | + |
| 1361 | +layer { |
| 1362 | + name: "scale_stage3_unit2_bn2" |
| 1363 | + bottom: "stage3_unit2_conv2" |
| 1364 | + top: "stage3_unit2_conv2" |
| 1365 | + type: "Scale" |
| 1366 | + scale_param { |
| 1367 | + bias_term: true |
| 1368 | + } |
| 1369 | +} |
| 1370 | + |
| 1371 | +layer { |
| 1372 | + name: "stage3_unit2_relu2" |
| 1373 | + type: "ReLU" |
| 1374 | + bottom: "stage3_unit2_conv2" |
| 1375 | + top: "stage3_unit2_conv2" |
| 1376 | +} |
| 1377 | + |
| 1378 | +layer { |
| 1379 | + name: "stage3_unit2_conv3" |
| 1380 | + type: "Convolution" |
| 1381 | + bottom: "stage3_unit2_conv2" |
| 1382 | + top: "stage3_unit2_conv3" |
| 1383 | + convolution_param { |
| 1384 | + num_output: 1024 |
| 1385 | + kernel_size: 1 |
| 1386 | + stride: 1 |
| 1387 | + pad: 0 |
| 1388 | + bias_term: false |
| 1389 | + } |
| 1390 | +} |
| 1391 | + |
| 1392 | +layer { |
| 1393 | + name: "stage3_unit2_bn3" |
| 1394 | + type: "BatchNorm" |
| 1395 | + bottom: "stage3_unit2_conv3" |
| 1396 | + top: "stage3_unit2_conv3" |
| 1397 | + batch_norm_param { |
| 1398 | + use_global_stats: true |
| 1399 | + eps: 2e-5 |
| 1400 | + } |
| 1401 | +} |
| 1402 | + |
| 1403 | +layer { |
| 1404 | + name: "scale_stage3_unit2_bn3" |
| 1405 | + bottom: "stage3_unit2_conv3" |
| 1406 | + top: "stage3_unit2_conv3" |
| 1407 | + type: "Scale" |
| 1408 | + scale_param { |
| 1409 | + bias_term: true |
| 1410 | + } |
| 1411 | +} |
| 1412 | + |
| 1413 | +layer { |
| 1414 | + name: "stage3_unit2_plus" |
| 1415 | + type: "Eltwise" |
| 1416 | + bottom: "stage3_unit1_plus" |
| 1417 | + bottom: "stage3_unit2_conv3" |
| 1418 | + top: "stage3_unit2_plus" |
| 1419 | + eltwise_param { |
| 1420 | + operation: SUM |
| 1421 | + } |
| 1422 | +} |
| 1423 | + |
| 1424 | +layer { |
| 1425 | + name: "stage3_unit2_relu" |
| 1426 | + type: "ReLU" |
| 1427 | + bottom: "stage3_unit2_plus" |
| 1428 | + top: "stage3_unit2_plus" |
| 1429 | +} |
| 1430 | + |
| 1431 | +layer { |
| 1432 | + name: "stage3_unit3_conv1" |
| 1433 | + type: "Convolution" |
| 1434 | + bottom: "stage3_unit2_plus" |
| 1435 | + top: "stage3_unit3_conv1" |
| 1436 | + convolution_param { |
| 1437 | + num_output: 512 |
| 1438 | + kernel_size: 1 |
| 1439 | + stride: 1 |
| 1440 | + pad: 0 |
| 1441 | + bias_term: false |
| 1442 | + } |
| 1443 | +} |
| 1444 | + |
| 1445 | +layer { |
| 1446 | + name: "stage3_unit3_bn1" |
| 1447 | + type: "BatchNorm" |
| 1448 | + bottom: "stage3_unit3_conv1" |
| 1449 | + top: "stage3_unit3_conv1" |
| 1450 | + batch_norm_param { |
| 1451 | + use_global_stats: true |
| 1452 | + eps: 2e-5 |
| 1453 | + } |
| 1454 | +} |
| 1455 | + |
| 1456 | +layer { |
| 1457 | + name: "scale_stage3_unit3_bn1" |
| 1458 | + bottom: "stage3_unit3_conv1" |
| 1459 | + top: "stage3_unit3_conv1" |
| 1460 | + type: "Scale" |
| 1461 | + scale_param { |
| 1462 | + bias_term: true |
| 1463 | + } |
| 1464 | +} |
| 1465 | + |
| 1466 | +layer { |
| 1467 | + name: "stage3_unit3_relu1" |
| 1468 | + type: "ReLU" |
| 1469 | + bottom: "stage3_unit3_conv1" |
| 1470 | + top: "stage3_unit3_conv1" |
| 1471 | +} |
| 1472 | + |
| 1473 | +layer { |
| 1474 | + name: "stage3_unit3_conv2" |
| 1475 | + type: "Convolution" |
| 1476 | + bottom: "stage3_unit3_conv1" |
| 1477 | + top: "stage3_unit3_conv2" |
| 1478 | + convolution_param { |
| 1479 | + num_output: 512 |
| 1480 | + kernel_size: 3 |
| 1481 | + stride: 1 |
| 1482 | + group: 32 |
| 1483 | + pad: 1 |
| 1484 | + bias_term: false |
| 1485 | + } |
| 1486 | +} |
| 1487 | + |
| 1488 | +layer { |
| 1489 | + name: "stage3_unit3_bn2" |
| 1490 | + type: "BatchNorm" |
| 1491 | + bottom: "stage3_unit3_conv2" |
| 1492 | + top: "stage3_unit3_conv2" |
| 1493 | + batch_norm_param { |
| 1494 | + use_global_stats: true |
| 1495 | + eps: 2e-5 |
| 1496 | + } |
| 1497 | +} |
| 1498 | + |
| 1499 | +layer { |
| 1500 | + name: "scale_stage3_unit3_bn2" |
| 1501 | + bottom: "stage3_unit3_conv2" |
| 1502 | + top: "stage3_unit3_conv2" |
| 1503 | + type: "Scale" |
| 1504 | + scale_param { |
| 1505 | + bias_term: true |
| 1506 | + } |
| 1507 | +} |
| 1508 | + |
| 1509 | +layer { |
| 1510 | + name: "stage3_unit3_relu2" |
| 1511 | + type: "ReLU" |
| 1512 | + bottom: "stage3_unit3_conv2" |
| 1513 | + top: "stage3_unit3_conv2" |
| 1514 | +} |
| 1515 | + |
| 1516 | +layer { |
| 1517 | + name: "stage3_unit3_conv3" |
| 1518 | + type: "Convolution" |
| 1519 | + bottom: "stage3_unit3_conv2" |
| 1520 | + top: "stage3_unit3_conv3" |
| 1521 | + convolution_param { |
| 1522 | + num_output: 1024 |
| 1523 | + kernel_size: 1 |
| 1524 | + stride: 1 |
| 1525 | + pad: 0 |
| 1526 | + bias_term: false |
| 1527 | + } |
| 1528 | +} |
| 1529 | + |
| 1530 | +layer { |
| 1531 | + name: "stage3_unit3_bn3" |
| 1532 | + type: "BatchNorm" |
| 1533 | + bottom: "stage3_unit3_conv3" |
| 1534 | + top: "stage3_unit3_conv3" |
| 1535 | + batch_norm_param { |
| 1536 | + use_global_stats: true |
| 1537 | + eps: 2e-5 |
| 1538 | + } |
| 1539 | +} |
| 1540 | + |
| 1541 | +layer { |
| 1542 | + name: "scale_stage3_unit3_bn3" |
| 1543 | + bottom: "stage3_unit3_conv3" |
| 1544 | + top: "stage3_unit3_conv3" |
| 1545 | + type: "Scale" |
| 1546 | + scale_param { |
| 1547 | + bias_term: true |
| 1548 | + } |
| 1549 | +} |
| 1550 | + |
| 1551 | +layer { |
| 1552 | + name: "stage3_unit3_plus" |
| 1553 | + type: "Eltwise" |
| 1554 | + bottom: "stage3_unit2_plus" |
| 1555 | + bottom: "stage3_unit3_conv3" |
| 1556 | + top: "stage3_unit3_plus" |
| 1557 | + eltwise_param { |
| 1558 | + operation: SUM |
| 1559 | + } |
| 1560 | +} |
| 1561 | + |
| 1562 | +layer { |
| 1563 | + name: "stage3_unit3_relu" |
| 1564 | + type: "ReLU" |
| 1565 | + bottom: "stage3_unit3_plus" |
| 1566 | + top: "stage3_unit3_plus" |
| 1567 | +} |
| 1568 | + |
| 1569 | +layer { |
| 1570 | + name: "stage3_unit4_conv1" |
| 1571 | + type: "Convolution" |
| 1572 | + bottom: "stage3_unit3_plus" |
| 1573 | + top: "stage3_unit4_conv1" |
| 1574 | + convolution_param { |
| 1575 | + num_output: 512 |
| 1576 | + kernel_size: 1 |
| 1577 | + stride: 1 |
| 1578 | + pad: 0 |
| 1579 | + bias_term: false |
| 1580 | + } |
| 1581 | +} |
| 1582 | + |
| 1583 | +layer { |
| 1584 | + name: "stage3_unit4_bn1" |
| 1585 | + type: "BatchNorm" |
| 1586 | + bottom: "stage3_unit4_conv1" |
| 1587 | + top: "stage3_unit4_conv1" |
| 1588 | + batch_norm_param { |
| 1589 | + use_global_stats: true |
| 1590 | + eps: 2e-5 |
| 1591 | + } |
| 1592 | +} |
| 1593 | + |
| 1594 | +layer { |
| 1595 | + name: "scale_stage3_unit4_bn1" |
| 1596 | + bottom: "stage3_unit4_conv1" |
| 1597 | + top: "stage3_unit4_conv1" |
| 1598 | + type: "Scale" |
| 1599 | + scale_param { |
| 1600 | + bias_term: true |
| 1601 | + } |
| 1602 | +} |
| 1603 | + |
| 1604 | +layer { |
| 1605 | + name: "stage3_unit4_relu1" |
| 1606 | + type: "ReLU" |
| 1607 | + bottom: "stage3_unit4_conv1" |
| 1608 | + top: "stage3_unit4_conv1" |
| 1609 | +} |
| 1610 | + |
| 1611 | +layer { |
| 1612 | + name: "stage3_unit4_conv2" |
| 1613 | + type: "Convolution" |
| 1614 | + bottom: "stage3_unit4_conv1" |
| 1615 | + top: "stage3_unit4_conv2" |
| 1616 | + convolution_param { |
| 1617 | + num_output: 512 |
| 1618 | + kernel_size: 3 |
| 1619 | + stride: 1 |
| 1620 | + group: 32 |
| 1621 | + pad: 1 |
| 1622 | + bias_term: false |
| 1623 | + } |
| 1624 | +} |
| 1625 | + |
| 1626 | +layer { |
| 1627 | + name: "stage3_unit4_bn2" |
| 1628 | + type: "BatchNorm" |
| 1629 | + bottom: "stage3_unit4_conv2" |
| 1630 | + top: "stage3_unit4_conv2" |
| 1631 | + batch_norm_param { |
| 1632 | + use_global_stats: true |
| 1633 | + eps: 2e-5 |
| 1634 | + } |
| 1635 | +} |
| 1636 | + |
| 1637 | +layer { |
| 1638 | + name: "scale_stage3_unit4_bn2" |
| 1639 | + bottom: "stage3_unit4_conv2" |
| 1640 | + top: "stage3_unit4_conv2" |
| 1641 | + type: "Scale" |
| 1642 | + scale_param { |
| 1643 | + bias_term: true |
| 1644 | + } |
| 1645 | +} |
| 1646 | + |
| 1647 | +layer { |
| 1648 | + name: "stage3_unit4_relu2" |
| 1649 | + type: "ReLU" |
| 1650 | + bottom: "stage3_unit4_conv2" |
| 1651 | + top: "stage3_unit4_conv2" |
| 1652 | +} |
| 1653 | + |
| 1654 | +layer { |
| 1655 | + name: "stage3_unit4_conv3" |
| 1656 | + type: "Convolution" |
| 1657 | + bottom: "stage3_unit4_conv2" |
| 1658 | + top: "stage3_unit4_conv3" |
| 1659 | + convolution_param { |
| 1660 | + num_output: 1024 |
| 1661 | + kernel_size: 1 |
| 1662 | + stride: 1 |
| 1663 | + pad: 0 |
| 1664 | + bias_term: false |
| 1665 | + } |
| 1666 | +} |
| 1667 | + |
| 1668 | +layer { |
| 1669 | + name: "stage3_unit4_bn3" |
| 1670 | + type: "BatchNorm" |
| 1671 | + bottom: "stage3_unit4_conv3" |
| 1672 | + top: "stage3_unit4_conv3" |
| 1673 | + batch_norm_param { |
| 1674 | + use_global_stats: true |
| 1675 | + eps: 2e-5 |
| 1676 | + } |
| 1677 | +} |
| 1678 | + |
| 1679 | +layer { |
| 1680 | + name: "scale_stage3_unit4_bn3" |
| 1681 | + bottom: "stage3_unit4_conv3" |
| 1682 | + top: "stage3_unit4_conv3" |
| 1683 | + type: "Scale" |
| 1684 | + scale_param { |
| 1685 | + bias_term: true |
| 1686 | + } |
| 1687 | +} |
| 1688 | + |
| 1689 | +layer { |
| 1690 | + name: "stage3_unit4_plus" |
| 1691 | + type: "Eltwise" |
| 1692 | + bottom: "stage3_unit3_plus" |
| 1693 | + bottom: "stage3_unit4_conv3" |
| 1694 | + top: "stage3_unit4_plus" |
| 1695 | + eltwise_param { |
| 1696 | + operation: SUM |
| 1697 | + } |
| 1698 | +} |
| 1699 | + |
| 1700 | +layer { |
| 1701 | + name: "stage3_unit4_relu" |
| 1702 | + type: "ReLU" |
| 1703 | + bottom: "stage3_unit4_plus" |
| 1704 | + top: "stage3_unit4_plus" |
| 1705 | +} |
| 1706 | + |
| 1707 | +layer { |
| 1708 | + name: "stage3_unit5_conv1" |
| 1709 | + type: "Convolution" |
| 1710 | + bottom: "stage3_unit4_plus" |
| 1711 | + top: "stage3_unit5_conv1" |
| 1712 | + convolution_param { |
| 1713 | + num_output: 512 |
| 1714 | + kernel_size: 1 |
| 1715 | + stride: 1 |
| 1716 | + pad: 0 |
| 1717 | + bias_term: false |
| 1718 | + } |
| 1719 | +} |
| 1720 | + |
| 1721 | +layer { |
| 1722 | + name: "stage3_unit5_bn1" |
| 1723 | + type: "BatchNorm" |
| 1724 | + bottom: "stage3_unit5_conv1" |
| 1725 | + top: "stage3_unit5_conv1" |
| 1726 | + batch_norm_param { |
| 1727 | + use_global_stats: true |
| 1728 | + eps: 2e-5 |
| 1729 | + } |
| 1730 | +} |
| 1731 | + |
| 1732 | +layer { |
| 1733 | + name: "scale_stage3_unit5_bn1" |
| 1734 | + bottom: "stage3_unit5_conv1" |
| 1735 | + top: "stage3_unit5_conv1" |
| 1736 | + type: "Scale" |
| 1737 | + scale_param { |
| 1738 | + bias_term: true |
| 1739 | + } |
| 1740 | +} |
| 1741 | + |
| 1742 | +layer { |
| 1743 | + name: "stage3_unit5_relu1" |
| 1744 | + type: "ReLU" |
| 1745 | + bottom: "stage3_unit5_conv1" |
| 1746 | + top: "stage3_unit5_conv1" |
| 1747 | +} |
| 1748 | + |
| 1749 | +layer { |
| 1750 | + name: "stage3_unit5_conv2" |
| 1751 | + type: "Convolution" |
| 1752 | + bottom: "stage3_unit5_conv1" |
| 1753 | + top: "stage3_unit5_conv2" |
| 1754 | + convolution_param { |
| 1755 | + num_output: 512 |
| 1756 | + kernel_size: 3 |
| 1757 | + stride: 1 |
| 1758 | + group: 32 |
| 1759 | + pad: 1 |
| 1760 | + bias_term: false |
| 1761 | + } |
| 1762 | +} |
| 1763 | + |
| 1764 | +layer { |
| 1765 | + name: "stage3_unit5_bn2" |
| 1766 | + type: "BatchNorm" |
| 1767 | + bottom: "stage3_unit5_conv2" |
| 1768 | + top: "stage3_unit5_conv2" |
| 1769 | + batch_norm_param { |
| 1770 | + use_global_stats: true |
| 1771 | + eps: 2e-5 |
| 1772 | + } |
| 1773 | +} |
| 1774 | + |
| 1775 | +layer { |
| 1776 | + name: "scale_stage3_unit5_bn2" |
| 1777 | + bottom: "stage3_unit5_conv2" |
| 1778 | + top: "stage3_unit5_conv2" |
| 1779 | + type: "Scale" |
| 1780 | + scale_param { |
| 1781 | + bias_term: true |
| 1782 | + } |
| 1783 | +} |
| 1784 | + |
| 1785 | +layer { |
| 1786 | + name: "stage3_unit5_relu2" |
| 1787 | + type: "ReLU" |
| 1788 | + bottom: "stage3_unit5_conv2" |
| 1789 | + top: "stage3_unit5_conv2" |
| 1790 | +} |
| 1791 | + |
| 1792 | +layer { |
| 1793 | + name: "stage3_unit5_conv3" |
| 1794 | + type: "Convolution" |
| 1795 | + bottom: "stage3_unit5_conv2" |
| 1796 | + top: "stage3_unit5_conv3" |
| 1797 | + convolution_param { |
| 1798 | + num_output: 1024 |
| 1799 | + kernel_size: 1 |
| 1800 | + stride: 1 |
| 1801 | + pad: 0 |
| 1802 | + bias_term: false |
| 1803 | + } |
| 1804 | +} |
| 1805 | + |
| 1806 | +layer { |
| 1807 | + name: "stage3_unit5_bn3" |
| 1808 | + type: "BatchNorm" |
| 1809 | + bottom: "stage3_unit5_conv3" |
| 1810 | + top: "stage3_unit5_conv3" |
| 1811 | + batch_norm_param { |
| 1812 | + use_global_stats: true |
| 1813 | + eps: 2e-5 |
| 1814 | + } |
| 1815 | +} |
| 1816 | + |
| 1817 | +layer { |
| 1818 | + name: "scale_stage3_unit5_bn3" |
| 1819 | + bottom: "stage3_unit5_conv3" |
| 1820 | + top: "stage3_unit5_conv3" |
| 1821 | + type: "Scale" |
| 1822 | + scale_param { |
| 1823 | + bias_term: true |
| 1824 | + } |
| 1825 | +} |
| 1826 | + |
| 1827 | +layer { |
| 1828 | + name: "stage3_unit5_plus" |
| 1829 | + type: "Eltwise" |
| 1830 | + bottom: "stage3_unit4_plus" |
| 1831 | + bottom: "stage3_unit5_conv3" |
| 1832 | + top: "stage3_unit5_plus" |
| 1833 | + eltwise_param { |
| 1834 | + operation: SUM |
| 1835 | + } |
| 1836 | +} |
| 1837 | + |
| 1838 | +layer { |
| 1839 | + name: "stage3_unit5_relu" |
| 1840 | + type: "ReLU" |
| 1841 | + bottom: "stage3_unit5_plus" |
| 1842 | + top: "stage3_unit5_plus" |
| 1843 | +} |
| 1844 | + |
| 1845 | +layer { |
| 1846 | + name: "stage3_unit6_conv1" |
| 1847 | + type: "Convolution" |
| 1848 | + bottom: "stage3_unit5_plus" |
| 1849 | + top: "stage3_unit6_conv1" |
| 1850 | + convolution_param { |
| 1851 | + num_output: 512 |
| 1852 | + kernel_size: 1 |
| 1853 | + stride: 1 |
| 1854 | + pad: 0 |
| 1855 | + bias_term: false |
| 1856 | + } |
| 1857 | +} |
| 1858 | + |
| 1859 | +layer { |
| 1860 | + name: "stage3_unit6_bn1" |
| 1861 | + type: "BatchNorm" |
| 1862 | + bottom: "stage3_unit6_conv1" |
| 1863 | + top: "stage3_unit6_conv1" |
| 1864 | + batch_norm_param { |
| 1865 | + use_global_stats: true |
| 1866 | + eps: 2e-5 |
| 1867 | + } |
| 1868 | +} |
| 1869 | + |
| 1870 | +layer { |
| 1871 | + name: "scale_stage3_unit6_bn1" |
| 1872 | + bottom: "stage3_unit6_conv1" |
| 1873 | + top: "stage3_unit6_conv1" |
| 1874 | + type: "Scale" |
| 1875 | + scale_param { |
| 1876 | + bias_term: true |
| 1877 | + } |
| 1878 | +} |
| 1879 | + |
| 1880 | +layer { |
| 1881 | + name: "stage3_unit6_relu1" |
| 1882 | + type: "ReLU" |
| 1883 | + bottom: "stage3_unit6_conv1" |
| 1884 | + top: "stage3_unit6_conv1" |
| 1885 | +} |
| 1886 | + |
| 1887 | +layer { |
| 1888 | + name: "stage3_unit6_conv2" |
| 1889 | + type: "Convolution" |
| 1890 | + bottom: "stage3_unit6_conv1" |
| 1891 | + top: "stage3_unit6_conv2" |
| 1892 | + convolution_param { |
| 1893 | + num_output: 512 |
| 1894 | + kernel_size: 3 |
| 1895 | + stride: 1 |
| 1896 | + group: 32 |
| 1897 | + pad: 1 |
| 1898 | + bias_term: false |
| 1899 | + } |
| 1900 | +} |
| 1901 | + |
| 1902 | +layer { |
| 1903 | + name: "stage3_unit6_bn2" |
| 1904 | + type: "BatchNorm" |
| 1905 | + bottom: "stage3_unit6_conv2" |
| 1906 | + top: "stage3_unit6_conv2" |
| 1907 | + batch_norm_param { |
| 1908 | + use_global_stats: true |
| 1909 | + eps: 2e-5 |
| 1910 | + } |
| 1911 | +} |
| 1912 | + |
| 1913 | +layer { |
| 1914 | + name: "scale_stage3_unit6_bn2" |
| 1915 | + bottom: "stage3_unit6_conv2" |
| 1916 | + top: "stage3_unit6_conv2" |
| 1917 | + type: "Scale" |
| 1918 | + scale_param { |
| 1919 | + bias_term: true |
| 1920 | + } |
| 1921 | +} |
| 1922 | + |
| 1923 | +layer { |
| 1924 | + name: "stage3_unit6_relu2" |
| 1925 | + type: "ReLU" |
| 1926 | + bottom: "stage3_unit6_conv2" |
| 1927 | + top: "stage3_unit6_conv2" |
| 1928 | +} |
| 1929 | + |
| 1930 | +layer { |
| 1931 | + name: "stage3_unit6_conv3" |
| 1932 | + type: "Convolution" |
| 1933 | + bottom: "stage3_unit6_conv2" |
| 1934 | + top: "stage3_unit6_conv3" |
| 1935 | + convolution_param { |
| 1936 | + num_output: 1024 |
| 1937 | + kernel_size: 1 |
| 1938 | + stride: 1 |
| 1939 | + pad: 0 |
| 1940 | + bias_term: false |
| 1941 | + } |
| 1942 | +} |
| 1943 | + |
| 1944 | +layer { |
| 1945 | + name: "stage3_unit6_bn3" |
| 1946 | + type: "BatchNorm" |
| 1947 | + bottom: "stage3_unit6_conv3" |
| 1948 | + top: "stage3_unit6_conv3" |
| 1949 | + batch_norm_param { |
| 1950 | + use_global_stats: true |
| 1951 | + eps: 2e-5 |
| 1952 | + } |
| 1953 | +} |
| 1954 | + |
| 1955 | +layer { |
| 1956 | + name: "scale_stage3_unit6_bn3" |
| 1957 | + bottom: "stage3_unit6_conv3" |
| 1958 | + top: "stage3_unit6_conv3" |
| 1959 | + type: "Scale" |
| 1960 | + scale_param { |
| 1961 | + bias_term: true |
| 1962 | + } |
| 1963 | +} |
| 1964 | + |
| 1965 | +layer { |
| 1966 | + name: "stage3_unit6_plus" |
| 1967 | + type: "Eltwise" |
| 1968 | + bottom: "stage3_unit5_plus" |
| 1969 | + bottom: "stage3_unit6_conv3" |
| 1970 | + top: "stage3_unit6_plus" |
| 1971 | + eltwise_param { |
| 1972 | + operation: SUM |
| 1973 | + } |
| 1974 | +} |
| 1975 | + |
| 1976 | +layer { |
| 1977 | + name: "stage3_unit6_relu" |
| 1978 | + type: "ReLU" |
| 1979 | + bottom: "stage3_unit6_plus" |
| 1980 | + top: "stage3_unit6_plus" |
| 1981 | +} |
| 1982 | + |
| 1983 | +layer { |
| 1984 | + name: "stage4_unit1_conv1" |
| 1985 | + type: "Convolution" |
| 1986 | + bottom: "stage3_unit6_plus" |
| 1987 | + top: "stage4_unit1_conv1" |
| 1988 | + convolution_param { |
| 1989 | + num_output: 1024 |
| 1990 | + kernel_size: 1 |
| 1991 | + stride: 1 |
| 1992 | + pad: 0 |
| 1993 | + bias_term: false |
| 1994 | + } |
| 1995 | +} |
| 1996 | + |
| 1997 | +layer { |
| 1998 | + name: "stage4_unit1_bn1" |
| 1999 | + type: "BatchNorm" |
| 2000 | + bottom: "stage4_unit1_conv1" |
| 2001 | + top: "stage4_unit1_conv1" |
| 2002 | + batch_norm_param { |
| 2003 | + use_global_stats: true |
| 2004 | + eps: 2e-5 |
| 2005 | + } |
| 2006 | +} |
| 2007 | + |
| 2008 | +layer { |
| 2009 | + name: "scale_stage4_unit1_bn1" |
| 2010 | + bottom: "stage4_unit1_conv1" |
| 2011 | + top: "stage4_unit1_conv1" |
| 2012 | + type: "Scale" |
| 2013 | + scale_param { |
| 2014 | + bias_term: true |
| 2015 | + } |
| 2016 | +} |
| 2017 | + |
| 2018 | +layer { |
| 2019 | + name: "stage4_unit1_relu1" |
| 2020 | + type: "ReLU" |
| 2021 | + bottom: "stage4_unit1_conv1" |
| 2022 | + top: "stage4_unit1_conv1" |
| 2023 | +} |
| 2024 | + |
| 2025 | +layer { |
| 2026 | + name: "stage4_unit1_conv2" |
| 2027 | + type: "Convolution" |
| 2028 | + bottom: "stage4_unit1_conv1" |
| 2029 | + top: "stage4_unit1_conv2" |
| 2030 | + convolution_param { |
| 2031 | + num_output: 1024 |
| 2032 | + kernel_size: 3 |
| 2033 | + stride: 2 |
| 2034 | + group: 32 |
| 2035 | + pad: 1 |
| 2036 | + bias_term: false |
| 2037 | + } |
| 2038 | +} |
| 2039 | + |
| 2040 | +layer { |
| 2041 | + name: "stage4_unit1_bn2" |
| 2042 | + type: "BatchNorm" |
| 2043 | + bottom: "stage4_unit1_conv2" |
| 2044 | + top: "stage4_unit1_conv2" |
| 2045 | + batch_norm_param { |
| 2046 | + use_global_stats: true |
| 2047 | + eps: 2e-5 |
| 2048 | + } |
| 2049 | +} |
| 2050 | + |
| 2051 | +layer { |
| 2052 | + name: "scale_stage4_unit1_bn2" |
| 2053 | + bottom: "stage4_unit1_conv2" |
| 2054 | + top: "stage4_unit1_conv2" |
| 2055 | + type: "Scale" |
| 2056 | + scale_param { |
| 2057 | + bias_term: true |
| 2058 | + } |
| 2059 | +} |
| 2060 | + |
| 2061 | +layer { |
| 2062 | + name: "stage4_unit1_relu2" |
| 2063 | + type: "ReLU" |
| 2064 | + bottom: "stage4_unit1_conv2" |
| 2065 | + top: "stage4_unit1_conv2" |
| 2066 | +} |
| 2067 | + |
| 2068 | +layer { |
| 2069 | + name: "stage4_unit1_conv3" |
| 2070 | + type: "Convolution" |
| 2071 | + bottom: "stage4_unit1_conv2" |
| 2072 | + top: "stage4_unit1_conv3" |
| 2073 | + convolution_param { |
| 2074 | + num_output: 2048 |
| 2075 | + kernel_size: 1 |
| 2076 | + stride: 1 |
| 2077 | + pad: 0 |
| 2078 | + bias_term: false |
| 2079 | + } |
| 2080 | +} |
| 2081 | + |
| 2082 | +layer { |
| 2083 | + name: "stage4_unit1_bn3" |
| 2084 | + type: "BatchNorm" |
| 2085 | + bottom: "stage4_unit1_conv3" |
| 2086 | + top: "stage4_unit1_conv3" |
| 2087 | + batch_norm_param { |
| 2088 | + use_global_stats: true |
| 2089 | + eps: 2e-5 |
| 2090 | + } |
| 2091 | +} |
| 2092 | + |
| 2093 | +layer { |
| 2094 | + name: "scale_stage4_unit1_bn3" |
| 2095 | + bottom: "stage4_unit1_conv3" |
| 2096 | + top: "stage4_unit1_conv3" |
| 2097 | + type: "Scale" |
| 2098 | + scale_param { |
| 2099 | + bias_term: true |
| 2100 | + } |
| 2101 | +} |
| 2102 | + |
| 2103 | +layer { |
| 2104 | + name: "stage4_unit1_sc" |
| 2105 | + type: "Convolution" |
| 2106 | + bottom: "stage3_unit6_plus" |
| 2107 | + top: "stage4_unit1_sc" |
| 2108 | + convolution_param { |
| 2109 | + num_output: 2048 |
| 2110 | + kernel_size: 1 |
| 2111 | + stride: 2 |
| 2112 | + pad: 0 |
| 2113 | + bias_term: false |
| 2114 | + } |
| 2115 | +} |
| 2116 | + |
| 2117 | +layer { |
| 2118 | + name: "stage4_unit1_sc_bn" |
| 2119 | + type: "BatchNorm" |
| 2120 | + bottom: "stage4_unit1_sc" |
| 2121 | + top: "stage4_unit1_sc" |
| 2122 | + batch_norm_param { |
| 2123 | + use_global_stats: true |
| 2124 | + eps: 2e-5 |
| 2125 | + } |
| 2126 | +} |
| 2127 | + |
| 2128 | +layer { |
| 2129 | + name: "scale_stage4_unit1_sc_bn" |
| 2130 | + bottom: "stage4_unit1_sc" |
| 2131 | + top: "stage4_unit1_sc" |
| 2132 | + type: "Scale" |
| 2133 | + scale_param { |
| 2134 | + bias_term: true |
| 2135 | + } |
| 2136 | +} |
| 2137 | + |
| 2138 | +layer { |
| 2139 | + name: "stage4_unit1_plus" |
| 2140 | + type: "Eltwise" |
| 2141 | + bottom: "stage4_unit1_sc" |
| 2142 | + bottom: "stage4_unit1_conv3" |
| 2143 | + top: "stage4_unit1_plus" |
| 2144 | + eltwise_param { |
| 2145 | + operation: SUM |
| 2146 | + } |
| 2147 | +} |
| 2148 | + |
| 2149 | +layer { |
| 2150 | + name: "stage4_unit1_relu" |
| 2151 | + type: "ReLU" |
| 2152 | + bottom: "stage4_unit1_plus" |
| 2153 | + top: "stage4_unit1_plus" |
| 2154 | +} |
| 2155 | + |
| 2156 | +layer { |
| 2157 | + name: "stage4_unit2_conv1" |
| 2158 | + type: "Convolution" |
| 2159 | + bottom: "stage4_unit1_plus" |
| 2160 | + top: "stage4_unit2_conv1" |
| 2161 | + convolution_param { |
| 2162 | + num_output: 1024 |
| 2163 | + kernel_size: 1 |
| 2164 | + stride: 1 |
| 2165 | + pad: 0 |
| 2166 | + bias_term: false |
| 2167 | + } |
| 2168 | +} |
| 2169 | + |
| 2170 | +layer { |
| 2171 | + name: "stage4_unit2_bn1" |
| 2172 | + type: "BatchNorm" |
| 2173 | + bottom: "stage4_unit2_conv1" |
| 2174 | + top: "stage4_unit2_conv1" |
| 2175 | + batch_norm_param { |
| 2176 | + use_global_stats: true |
| 2177 | + eps: 2e-5 |
| 2178 | + } |
| 2179 | +} |
| 2180 | + |
| 2181 | +layer { |
| 2182 | + name: "scale_stage4_unit2_bn1" |
| 2183 | + bottom: "stage4_unit2_conv1" |
| 2184 | + top: "stage4_unit2_conv1" |
| 2185 | + type: "Scale" |
| 2186 | + scale_param { |
| 2187 | + bias_term: true |
| 2188 | + } |
| 2189 | +} |
| 2190 | + |
| 2191 | +layer { |
| 2192 | + name: "stage4_unit2_relu1" |
| 2193 | + type: "ReLU" |
| 2194 | + bottom: "stage4_unit2_conv1" |
| 2195 | + top: "stage4_unit2_conv1" |
| 2196 | +} |
| 2197 | + |
| 2198 | +layer { |
| 2199 | + name: "stage4_unit2_conv2" |
| 2200 | + type: "Convolution" |
| 2201 | + bottom: "stage4_unit2_conv1" |
| 2202 | + top: "stage4_unit2_conv2" |
| 2203 | + convolution_param { |
| 2204 | + num_output: 1024 |
| 2205 | + kernel_size: 3 |
| 2206 | + stride: 1 |
| 2207 | + group: 32 |
| 2208 | + pad: 1 |
| 2209 | + bias_term: false |
| 2210 | + } |
| 2211 | +} |
| 2212 | + |
| 2213 | +layer { |
| 2214 | + name: "stage4_unit2_bn2" |
| 2215 | + type: "BatchNorm" |
| 2216 | + bottom: "stage4_unit2_conv2" |
| 2217 | + top: "stage4_unit2_conv2" |
| 2218 | + batch_norm_param { |
| 2219 | + use_global_stats: true |
| 2220 | + eps: 2e-5 |
| 2221 | + } |
| 2222 | +} |
| 2223 | + |
| 2224 | +layer { |
| 2225 | + name: "scale_stage4_unit2_bn2" |
| 2226 | + bottom: "stage4_unit2_conv2" |
| 2227 | + top: "stage4_unit2_conv2" |
| 2228 | + type: "Scale" |
| 2229 | + scale_param { |
| 2230 | + bias_term: true |
| 2231 | + } |
| 2232 | +} |
| 2233 | + |
| 2234 | +layer { |
| 2235 | + name: "stage4_unit2_relu2" |
| 2236 | + type: "ReLU" |
| 2237 | + bottom: "stage4_unit2_conv2" |
| 2238 | + top: "stage4_unit2_conv2" |
| 2239 | +} |
| 2240 | + |
| 2241 | +layer { |
| 2242 | + name: "stage4_unit2_conv3" |
| 2243 | + type: "Convolution" |
| 2244 | + bottom: "stage4_unit2_conv2" |
| 2245 | + top: "stage4_unit2_conv3" |
| 2246 | + convolution_param { |
| 2247 | + num_output: 2048 |
| 2248 | + kernel_size: 1 |
| 2249 | + stride: 1 |
| 2250 | + pad: 0 |
| 2251 | + bias_term: false |
| 2252 | + } |
| 2253 | +} |
| 2254 | + |
| 2255 | +layer { |
| 2256 | + name: "stage4_unit2_bn3" |
| 2257 | + type: "BatchNorm" |
| 2258 | + bottom: "stage4_unit2_conv3" |
| 2259 | + top: "stage4_unit2_conv3" |
| 2260 | + batch_norm_param { |
| 2261 | + use_global_stats: true |
| 2262 | + eps: 2e-5 |
| 2263 | + } |
| 2264 | +} |
| 2265 | + |
| 2266 | +layer { |
| 2267 | + name: "scale_stage4_unit2_bn3" |
| 2268 | + bottom: "stage4_unit2_conv3" |
| 2269 | + top: "stage4_unit2_conv3" |
| 2270 | + type: "Scale" |
| 2271 | + scale_param { |
| 2272 | + bias_term: true |
| 2273 | + } |
| 2274 | +} |
| 2275 | + |
| 2276 | +layer { |
| 2277 | + name: "stage4_unit2_plus" |
| 2278 | + type: "Eltwise" |
| 2279 | + bottom: "stage4_unit1_plus" |
| 2280 | + bottom: "stage4_unit2_conv3" |
| 2281 | + top: "stage4_unit2_plus" |
| 2282 | + eltwise_param { |
| 2283 | + operation: SUM |
| 2284 | + } |
| 2285 | +} |
| 2286 | + |
| 2287 | +layer { |
| 2288 | + name: "stage4_unit2_relu" |
| 2289 | + type: "ReLU" |
| 2290 | + bottom: "stage4_unit2_plus" |
| 2291 | + top: "stage4_unit2_plus" |
| 2292 | +} |
| 2293 | + |
| 2294 | +layer { |
| 2295 | + name: "stage4_unit3_conv1" |
| 2296 | + type: "Convolution" |
| 2297 | + bottom: "stage4_unit2_plus" |
| 2298 | + top: "stage4_unit3_conv1" |
| 2299 | + convolution_param { |
| 2300 | + num_output: 1024 |
| 2301 | + kernel_size: 1 |
| 2302 | + stride: 1 |
| 2303 | + pad: 0 |
| 2304 | + bias_term: false |
| 2305 | + } |
| 2306 | +} |
| 2307 | + |
| 2308 | +layer { |
| 2309 | + name: "stage4_unit3_bn1" |
| 2310 | + type: "BatchNorm" |
| 2311 | + bottom: "stage4_unit3_conv1" |
| 2312 | + top: "stage4_unit3_conv1" |
| 2313 | + batch_norm_param { |
| 2314 | + use_global_stats: true |
| 2315 | + eps: 2e-5 |
| 2316 | + } |
| 2317 | +} |
| 2318 | + |
| 2319 | +layer { |
| 2320 | + name: "scale_stage4_unit3_bn1" |
| 2321 | + bottom: "stage4_unit3_conv1" |
| 2322 | + top: "stage4_unit3_conv1" |
| 2323 | + type: "Scale" |
| 2324 | + scale_param { |
| 2325 | + bias_term: true |
| 2326 | + } |
| 2327 | +} |
| 2328 | + |
| 2329 | +layer { |
| 2330 | + name: "stage4_unit3_relu1" |
| 2331 | + type: "ReLU" |
| 2332 | + bottom: "stage4_unit3_conv1" |
| 2333 | + top: "stage4_unit3_conv1" |
| 2334 | +} |
| 2335 | + |
| 2336 | +layer { |
| 2337 | + name: "stage4_unit3_conv2" |
| 2338 | + type: "Convolution" |
| 2339 | + bottom: "stage4_unit3_conv1" |
| 2340 | + top: "stage4_unit3_conv2" |
| 2341 | + convolution_param { |
| 2342 | + num_output: 1024 |
| 2343 | + kernel_size: 3 |
| 2344 | + stride: 1 |
| 2345 | + group: 32 |
| 2346 | + pad: 1 |
| 2347 | + bias_term: false |
| 2348 | + } |
| 2349 | +} |
| 2350 | + |
| 2351 | +layer { |
| 2352 | + name: "stage4_unit3_bn2" |
| 2353 | + type: "BatchNorm" |
| 2354 | + bottom: "stage4_unit3_conv2" |
| 2355 | + top: "stage4_unit3_conv2" |
| 2356 | + batch_norm_param { |
| 2357 | + use_global_stats: true |
| 2358 | + eps: 2e-5 |
| 2359 | + } |
| 2360 | +} |
| 2361 | + |
| 2362 | +layer { |
| 2363 | + name: "scale_stage4_unit3_bn2" |
| 2364 | + bottom: "stage4_unit3_conv2" |
| 2365 | + top: "stage4_unit3_conv2" |
| 2366 | + type: "Scale" |
| 2367 | + scale_param { |
| 2368 | + bias_term: true |
| 2369 | + } |
| 2370 | +} |
| 2371 | + |
| 2372 | +layer { |
| 2373 | + name: "stage4_unit3_relu2" |
| 2374 | + type: "ReLU" |
| 2375 | + bottom: "stage4_unit3_conv2" |
| 2376 | + top: "stage4_unit3_conv2" |
| 2377 | +} |
| 2378 | + |
| 2379 | +layer { |
| 2380 | + name: "stage4_unit3_conv3" |
| 2381 | + type: "Convolution" |
| 2382 | + bottom: "stage4_unit3_conv2" |
| 2383 | + top: "stage4_unit3_conv3" |
| 2384 | + convolution_param { |
| 2385 | + num_output: 2048 |
| 2386 | + kernel_size: 1 |
| 2387 | + stride: 1 |
| 2388 | + pad: 0 |
| 2389 | + bias_term: false |
| 2390 | + } |
| 2391 | +} |
| 2392 | + |
| 2393 | +layer { |
| 2394 | + name: "stage4_unit3_bn3" |
| 2395 | + type: "BatchNorm" |
| 2396 | + bottom: "stage4_unit3_conv3" |
| 2397 | + top: "stage4_unit3_conv3" |
| 2398 | + batch_norm_param { |
| 2399 | + use_global_stats: true |
| 2400 | + eps: 2e-5 |
| 2401 | + } |
| 2402 | +} |
| 2403 | + |
| 2404 | +layer { |
| 2405 | + name: "scale_stage4_unit3_bn3" |
| 2406 | + bottom: "stage4_unit3_conv3" |
| 2407 | + top: "stage4_unit3_conv3" |
| 2408 | + type: "Scale" |
| 2409 | + scale_param { |
| 2410 | + bias_term: true |
| 2411 | + } |
| 2412 | +} |
| 2413 | + |
| 2414 | +layer { |
| 2415 | + name: "stage4_unit3_plus" |
| 2416 | + type: "Eltwise" |
| 2417 | + bottom: "stage4_unit2_plus" |
| 2418 | + bottom: "stage4_unit3_conv3" |
| 2419 | + top: "stage4_unit3_plus" |
| 2420 | + eltwise_param { |
| 2421 | + operation: SUM |
| 2422 | + } |
| 2423 | +} |
| 2424 | + |
| 2425 | +layer { |
| 2426 | + name: "stage4_unit3_relu" |
| 2427 | + type: "ReLU" |
| 2428 | + bottom: "stage4_unit3_plus" |
| 2429 | + top: "stage4_unit3_plus" |
| 2430 | +} |
| 2431 | + |
| 2432 | +layer { |
| 2433 | + name: "pool1" |
| 2434 | + type: "Pooling" |
| 2435 | + bottom: "stage4_unit3_plus" |
| 2436 | + top: "pool1" |
| 2437 | + pooling_param { |
| 2438 | + global_pooling : true |
| 2439 | + pool: AVE |
| 2440 | + } |
| 2441 | +} |
| 2442 | + |
| 2443 | +layer { |
| 2444 | + name: "fc1" |
| 2445 | + type: "InnerProduct" |
| 2446 | + bottom: "pool1" |
| 2447 | + top: "fc1" |
| 2448 | + param { |
| 2449 | + lr_mult: 1 |
| 2450 | + decay_mult: 1 |
| 2451 | + } |
| 2452 | + param { |
| 2453 | + lr_mult: 2 |
| 2454 | + decay_mult: 0 |
| 2455 | + } |
| 2456 | + inner_product_param { |
| 2457 | + num_output: 1000 |
| 2458 | + weight_filler { |
| 2459 | + type: "xavier" |
| 2460 | + } |
| 2461 | + bias_filler { |
| 2462 | + type: "constant" |
| 2463 | + value: 0 |
| 2464 | + } |
| 2465 | + } |
| 2466 | +} |
| 2467 | + |
| 2468 | +layer { |
| 2469 | + name: "prob" |
| 2470 | + type: "Softmax" |
| 2471 | + bottom: "fc1" |
| 2472 | + top: "prob" |
| 2473 | +} |
| 2474 | + |
0 commit comments