-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathdata_utils.py
229 lines (178 loc) · 7.25 KB
/
data_utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
"""
Copyright 2020 Twitter, Inc.
SPDX-License-Identifier: Apache-2.0
Modified by Daeho Um (daehoum1@snu.ac.kr)
"""
import math
import random
import numpy as np
import torch
from torch_geometric.data import Data, InMemoryDataset
from utils import get_mask
DATA_PATH = "data"
def keep_only_largest_connected_component(dataset):
lcc = get_largest_connected_component(dataset)
x_new = dataset.data.x[lcc]
y_new = dataset.data.y[lcc]
row, col = dataset.data.edge_index.numpy()
edges = [[i, j] for i, j in zip(row, col) if i in lcc and j in lcc]
edges = remap_edges(edges, get_node_mapper(lcc))
data = Data(
x=x_new,
edge_index=torch.LongTensor(edges),
y=y_new,
train_mask=torch.zeros(y_new.size()[0], dtype=torch.bool),
test_mask=torch.zeros(y_new.size()[0], dtype=torch.bool),
val_mask=torch.zeros(y_new.size()[0], dtype=torch.bool),
)
dataset.data = data
return dataset
def get_component(dataset: InMemoryDataset, start: int = 0) -> set:
visited_nodes = set()
queued_nodes = set([start])
row, col = dataset.data.edge_index.numpy()
while queued_nodes:
current_node = queued_nodes.pop()
visited_nodes.update([current_node])
neighbors = col[np.where(row == current_node)[0]]
neighbors = [n for n in neighbors if n not in visited_nodes and n not in queued_nodes]
queued_nodes.update(neighbors)
return visited_nodes
def get_largest_connected_component(dataset: InMemoryDataset) -> np.ndarray:
remaining_nodes = set(range(dataset.data.x.shape[0]))
comps = []
while remaining_nodes:
start = min(remaining_nodes)
comp = get_component(dataset, start)
comps.append(comp)
remaining_nodes = remaining_nodes.difference(comp)
return np.array(list(comps[np.argmax(list(map(len, comps)))]))
def get_node_mapper(lcc: np.ndarray) -> dict:
mapper = {}
counter = 0
for node in lcc:
mapper[node] = counter
counter += 1
return mapper
def remap_edges(edges: list, mapper: dict) -> list:
row = [e[0] for e in edges]
col = [e[1] for e in edges]
row = list(map(lambda x: mapper[x], row))
col = list(map(lambda x: mapper[x], col))
return [row, col]
def set_train_val_test_split_im(seed: int, data: Data, dataset_name: str, split_idx: int = None) -> Data:
if dataset_name in [
"Cora",
"CiteSeer",
"PubMed",
"Photo",
"Computers",
]:
if dataset_name == "Cora":
num_train = 140
num_val = 1360
elif dataset_name == "CiteSeer":
num_train = 120
num_val = 1300
elif dataset_name == "PubMed":
num_train = 60
num_val = 1440
elif dataset_name == "Photo":
num_train = 160
num_val = 1340
elif dataset_name == "Computers":
num_train = 200
num_val = 1300
data = set_uniform_train_val_test_split_by_num(
seed=seed, data=data, num_train = num_train, num_val = num_val
)
return data
def set_train_val_test_split(seed: int, data: Data, dataset_name: str, split_idx: int = None) -> Data:
if dataset_name in [
"Cora",
"CiteSeer",
"PubMed",
"Photo",
"Computers"
]:
# Use split from "Diffusion Improves Graph Learning" paper, which selects 20 nodes for each class to be in the training set
num_val = 5000 if dataset_name == "CoauthorCS" else 1500
data = set_per_class_train_val_test_split(
seed=seed, data=data, num_val=num_val, num_train_per_class=20, split_idx=split_idx,
)
elif dataset_name in ["OGBN-Arxiv"]:
# OGBN datasets have pre-assigned split
data.train_mask = split_idx["train"]
data.val_mask = split_idx["valid"]
data.test_mask = split_idx["test"]
else:
raise ValueError(f"We don't know how to split the data for {dataset_name}")
return data
def set_per_class_train_val_test_split(
seed: int, data: Data, num_val: int = 1500, num_train_per_class: int = 20, split_idx: int = None,
) -> Data:
if split_idx is None:
random.seed(seed)
rnd_state = np.random.RandomState(seed)
# rnd_state = np.random.RandomState(development_seed)
num_nodes = data.y.shape[0]
development_idx = rnd_state.choice(num_nodes, num_val, replace=False)
test_idx = [i for i in np.arange(num_nodes) if i not in development_idx]
train_idx = []
for c in range(data.y.max() + 1):
class_idx = development_idx[np.where(data.y[development_idx].cpu() == c)[0]]
train_idx.extend(rnd_state.choice(class_idx, num_train_per_class, replace=False))
val_idx = [i for i in development_idx if i not in train_idx]
data.train_mask = get_mask(train_idx, num_nodes)
data.val_mask = get_mask(val_idx, num_nodes)
data.test_mask = get_mask(test_idx, num_nodes)
else:
data.train_mask = split_idx["train"]
data.val_mask = split_idx["valid"]
data.test_mask = split_idx["test"]
return data
def set_uniform_train_val_test_split(seed: int, data: Data, train_ratio: float = 0.5, val_ratio: float = 0.25) -> Data:
rnd_state = np.random.RandomState(seed)
# np.random.seed(seed)
num_nodes = data.y.shape[0]
# Some nodes have labels -1 (i.e. unlabeled), so we need to exclude them
labeled_nodes = torch.where(data.y != -1)[0]
num_labeled_nodes = labeled_nodes.shape[0]
num_train = math.floor(num_labeled_nodes * train_ratio)
num_val = math.floor(num_labeled_nodes * val_ratio)
idxs = list(range(num_labeled_nodes))
# Shuffle in place
rnd_state.shuffle(idxs)
train_idx = idxs[:num_train]
val_idx = idxs[num_train : num_train + num_val]
test_idx = idxs[num_train + num_val :]
train_idx = labeled_nodes[train_idx]
val_idx = labeled_nodes[val_idx]
test_idx = labeled_nodes[test_idx]
data.train_mask = get_mask(train_idx, num_nodes)
data.val_mask = get_mask(val_idx, num_nodes)
data.test_mask = get_mask(test_idx, num_nodes)
# Set labels of unlabeled nodes to 0, otherwise there is an issue in label propagation (which does one-hot encoding of all labels)
# This labels are not used since these nodes are excluded from all masks, do it doesn't affect any results
data.y[data.y == -1] = 0
return data
def set_uniform_train_val_test_split_by_num(seed: int, data: Data, num_train: int = 1, num_val: int = 1) -> Data:
rnd_state = np.random.RandomState(seed)
num_nodes = data.y.shape[0]
# Some nodes have labels -1 (i.e. unlabeled), so we need to exclude them
labeled_nodes = torch.where(data.y != -1)[0]
num_labeled_nodes = labeled_nodes.shape[0]
idxs = list(range(num_labeled_nodes))
# Shuffle in place
rnd_state.shuffle(idxs)
train_idx = idxs[:num_train]
val_idx = idxs[num_train : num_train + num_val]
test_idx = idxs[num_train + num_val :]
train_idx = labeled_nodes[train_idx]
val_idx = labeled_nodes[val_idx]
test_idx = labeled_nodes[test_idx]
data.train_mask = get_mask(train_idx, num_nodes)
data.val_mask = get_mask(val_idx, num_nodes)
data.test_mask = get_mask(test_idx, num_nodes)
data.y[data.y == -1] = 0
return data