-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathreduce_sum.java
54 lines (50 loc) · 1.28 KB
/
reduce_sum.java
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
package tensordef;
import basicops.*;
public class reduce_sum extends superopdef
{
tensorarray arr;
tensorarray eval[];
add addops[];
backpropagationstructure<reduce_sum> curstruct;
tensorgraph graph;
public reduce_sum(tensorarray arr,tensorgraph graph)
{
this.arr=arr;
this.graph=graph;
eval=new tensorarray[arr.dim2+1];
for(int i=0;i<arr.dim2+1;i++)
{
eval[i]=new tensorarray(1,1,false);
}
addops=new add[arr.dim2];
for(int i=0;i<arr.dim2;i++)
{
addops[i]=new add(eval[i].arr[0][0],arr.arr[0][i]);
}
//System.out.println(eval[arr.dim2-1].arr[0][0]);
curstruct=new backpropagationstructure<>(this,eval[arr.dim2],null);
graph.addtolist(curstruct);
}
public tensorarray forward()
{
for(int i=0;i<arr.dim2;i++)
{
eval[i+1].arr[0][0].data=addops[i].forward().data;
}
//System.out.println(eval[0].arr);
return eval[arr.dim2];
}
public void backward(tensorarray backflow)
{
//System.out.println(eval[arr.dim2].arr[0][0].grad);
//System.out.println(backflow);
addops[arr.dim2-1].backward(backflow.arr[0][0]);
//System.out.println(eval[arr.dim2-1].arr[0][0].grad);
for(int i=arr.dim2-2;i>=0;i--)
{
//System.out.println(eval[i+1].arr[0][0].grad);
addops[i].backward(eval[i+1].arr[0][0]);
}
graph.removefromlist(curstruct);
}
}