-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathsub_tensorarray.java
63 lines (62 loc) · 1.4 KB
/
sub_tensorarray.java
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
package tensordef;
import basicops.*;
import java.math.*;
import java.util.*;
public class sub_tensorarray extends superopdef
{
tensorarray arr1;
tensorarray arr2;
sub subops[][];
tensorarray eval;
tensorgraph graph;
backpropagationstructure<sub_tensorarray> curstruct;
public sub_tensorarray(tensorarray t1,tensorarray t2,tensorgraph graph)
{
arr1=t1;
arr2=t2;
this.graph=graph;
eval=new tensorarray(arr1.dim1,arr1.dim2,false);
curstruct=new backpropagationstructure<sub_tensorarray>(this,eval,null);
graph.addtolist(curstruct);
if (arr1.dim1!=arr2.dim1 && arr1.dim2!=arr2.dim2)
{
System.out.println("dimensions do not match");
System.out.println("dimensions of parameter1:"+arr1.dim1 +" "+arr1.dim2);
System.out.println("dimensions of parameter2:"+arr2.dim1 +" "+arr2.dim2);
System.exit(1);
}
else
{
subops=new sub[arr1.dim1][arr1.dim2];
for(int i=0;i<arr1.dim1;i++)
{
for(int j=0;j<arr1.dim2;j++)
{
subops[i][j]=new sub(arr1.arr[i][j],arr2.arr[i][j]);
}
}
}
}
public tensorarray forward()
{
for(int i=0;i<arr1.dim1;i++)
{
for(int j=0;j<arr1.dim2;j++)
{
eval.arr[i][j].data=subops[i][j].forward().data;
}
}
return eval;
}
public void backward(tensorarray backflow)
{
for(int i=0;i<arr1.dim1;i++)
{
for(int j=0;j<arr1.dim2;j++)
{
subops[i][j].backward(backflow.arr[i][j]);
}
}
graph.removefromlist(curstruct);
}
}