@@ -2173,12 +2173,12 @@ def test_MetaPath2Vec(idtype):
2173
2173
assert embeds .shape [0 ] == g .num_nodes ()
2174
2174
2175
2175
2176
- @pytest .mark .parametrize (' num_layer' , [1 , 4 ])
2177
- @pytest .mark .parametrize ('k' , [3 , 5 ])
2178
- @pytest .mark .parametrize (' lpe_dim' , [4 , 16 ])
2179
- @pytest .mark .parametrize (' n_head' , [1 , 4 ])
2180
- @pytest .mark .parametrize (' batch_norm' , [True , False ])
2181
- @pytest .mark .parametrize (' num_post_layer' , [0 , 1 , 2 ])
2176
+ @pytest .mark .parametrize (" num_layer" , [1 , 4 ])
2177
+ @pytest .mark .parametrize ("k" , [3 , 5 ])
2178
+ @pytest .mark .parametrize (" lpe_dim" , [4 , 16 ])
2179
+ @pytest .mark .parametrize (" n_head" , [1 , 4 ])
2180
+ @pytest .mark .parametrize (" batch_norm" , [True , False ])
2181
+ @pytest .mark .parametrize (" num_post_layer" , [0 , 1 , 2 ])
2182
2182
def test_LapPosEncoder (
2183
2183
num_layer , k , lpe_dim , n_head , batch_norm , num_post_layer
2184
2184
):
@@ -2199,16 +2199,16 @@ def test_LapPosEncoder(
2199
2199
k ,
2200
2200
lpe_dim ,
2201
2201
batch_norm = batch_norm ,
2202
- num_post_layer = num_post_layer
2202
+ num_post_layer = num_post_layer ,
2203
2203
).to (ctx )
2204
2204
assert model (EigVals , EigVecs ).shape == (num_nodes , lpe_dim )
2205
2205
2206
2206
2207
- @pytest .mark .parametrize (' feat_size' , [128 , 512 ])
2208
- @pytest .mark .parametrize (' num_heads' , [8 , 16 ])
2209
- @pytest .mark .parametrize (' bias' , [True , False ])
2210
- @pytest .mark .parametrize (' attn_bias_type' , [' add' , ' mul' ])
2211
- @pytest .mark .parametrize (' attn_drop' , [0.1 , 0.5 ])
2207
+ @pytest .mark .parametrize (" feat_size" , [128 , 512 ])
2208
+ @pytest .mark .parametrize (" num_heads" , [8 , 16 ])
2209
+ @pytest .mark .parametrize (" bias" , [True , False ])
2210
+ @pytest .mark .parametrize (" attn_bias_type" , [" add" , " mul" ])
2211
+ @pytest .mark .parametrize (" attn_drop" , [0.1 , 0.5 ])
2212
2212
def test_BiasedMHA (feat_size , num_heads , bias , attn_bias_type , attn_drop ):
2213
2213
ndata = th .rand (16 , 100 , feat_size )
2214
2214
attn_bias = th .rand (16 , 100 , 100 , num_heads )
0 commit comments