|
| 1 | +// Copyright 2024 The Go Authors. All rights reserved. |
| 2 | +// Use of this source code is governed by a BSD-style |
| 3 | +// license that can be found in the LICENSE file. |
| 4 | + |
| 5 | +package bloom |
| 6 | + |
| 7 | +import ( |
| 8 | + "hash/maphash" |
| 9 | + "math" |
| 10 | +) |
| 11 | + |
| 12 | +// block is the element type of the filter bitfield. |
| 13 | +type block = uint8 |
| 14 | + |
| 15 | +const blockBits = 8 |
| 16 | + |
| 17 | +// Filter is a bloom filter for a set of strings. |
| 18 | +type Filter struct { |
| 19 | + seeds []maphash.Seed |
| 20 | + blocks []block |
| 21 | +} |
| 22 | + |
| 23 | +// NewFilter constructs a new Filter with the given elements. |
| 24 | +func NewFilter(elems []string) *Filter { |
| 25 | + // Tolerate a 5% false positive rate. |
| 26 | + nblocks, nseeds := calibrate(0.05, len(elems)) |
| 27 | + f := &Filter{ |
| 28 | + blocks: make([]block, nblocks), |
| 29 | + seeds: make([]maphash.Seed, nseeds), |
| 30 | + } |
| 31 | + for i := range nseeds { |
| 32 | + f.seeds[i] = maphash.MakeSeed() |
| 33 | + } |
| 34 | + for _, elem := range elems { |
| 35 | + for _, seed := range f.seeds { |
| 36 | + index, bit := f.locate(seed, elem) |
| 37 | + f.blocks[index] |= bit |
| 38 | + } |
| 39 | + } |
| 40 | + return f |
| 41 | +} |
| 42 | + |
| 43 | +// locate returns the block index and bit corresponding to the given hash seed and |
| 44 | +// string. |
| 45 | +func (f *Filter) locate(seed maphash.Seed, s string) (index int, bit block) { |
| 46 | + h := uint(maphash.String(seed, s)) |
| 47 | + blk := h / blockBits % uint(len(f.blocks)) |
| 48 | + bit = block(1 << (h % blockBits)) |
| 49 | + return int(blk), bit |
| 50 | +} |
| 51 | + |
| 52 | +func assert(cond bool, msg string) { |
| 53 | + if !cond { |
| 54 | + panic(msg) |
| 55 | + } |
| 56 | +} |
| 57 | + |
| 58 | +// calibrate approximates the number of blocks and seeds to use for a bloom |
| 59 | +// filter with desired false positive rate fpRate, given n elements. |
| 60 | +func calibrate(fpRate float64, n int) (blocks, seeds int) { |
| 61 | + // We following the terms of https://en.wikipedia.org/wiki/Bloom_filter: |
| 62 | + // - k is the number of hash functions, |
| 63 | + // - m is the size of the bit field; |
| 64 | + // - n is the number of set bits. |
| 65 | + |
| 66 | + assert(0 < fpRate && fpRate < 1, "invalid false positive rate") |
| 67 | + assert(n >= 0, "invalid set size") |
| 68 | + |
| 69 | + if n == 0 { |
| 70 | + // degenerate case; use the simplest filter |
| 71 | + return 1, 1 |
| 72 | + } |
| 73 | + |
| 74 | + // Calibrate the number of blocks based on the optimal number of bits per |
| 75 | + // element. In this case we round up, as more bits leads to fewer false |
| 76 | + // positives. |
| 77 | + logFpRate := math.Log(fpRate) // reused for k below |
| 78 | + m := -(float64(n) * logFpRate) / (math.Ln2 * math.Ln2) |
| 79 | + blocks = int(m) / blockBits |
| 80 | + if float64(blocks*blockBits) < m { |
| 81 | + blocks += 1 |
| 82 | + } |
| 83 | + |
| 84 | + // Estimate the number of hash functions (=seeds). This is imprecise, not |
| 85 | + // least since the formula in the article above assumes that the number of |
| 86 | + // bits per element is not rounded. |
| 87 | + // |
| 88 | + // Here we round to the nearest integer (not unconditionally round up), since |
| 89 | + // more hash functions do not always lead to better results. |
| 90 | + k := -logFpRate / math.Ln2 |
| 91 | + seeds = max(int(math.Round(k)), 1) |
| 92 | + |
| 93 | + return blocks, seeds |
| 94 | +} |
| 95 | + |
| 96 | +// MayContain reports whether the filter may contain s. |
| 97 | +func (f *Filter) MayContain(s string) bool { |
| 98 | + for _, seed := range f.seeds { |
| 99 | + index, bit := f.locate(seed, s) |
| 100 | + if f.blocks[index]&bit == 0 { |
| 101 | + return false |
| 102 | + } |
| 103 | + } |
| 104 | + return true |
| 105 | +} |
0 commit comments