-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathval_2D.py
124 lines (116 loc) · 4.67 KB
/
val_2D.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
import numpy as np
import torch
from medpy import metric
from scipy.ndimage import zoom
def calculate_metric_percase(pred, gt):
pred[pred > 0] = 1
gt[gt > 0] = 1
if pred.sum() > 0:
dice = metric.binary.dc(pred, gt)
hd95 = metric.binary.hd95(pred, gt)
return dice, hd95
else:
return 0, 0
def test_single_volume(image, label, net, classes, patch_size=[256, 256]):
image, label = image.squeeze(0).cpu().detach(
).numpy(), label.squeeze(0).cpu().detach().numpy()
if len(image.shape) == 3:
prediction = np.zeros_like(label)
for ind in range(image.shape[0]):
slice = image[ind, :, :]
x, y = slice.shape[0], slice.shape[1]
slice = zoom(
slice, (patch_size[0] / x, patch_size[1] / y), order=0)
input = torch.from_numpy(slice).unsqueeze(
0).unsqueeze(0).float().cuda()
net.eval()
with torch.no_grad():
out = torch.argmax(torch.softmax(
net(input), dim=1), dim=1).squeeze(0)
out = out.cpu().detach().numpy()
pred = zoom(
out, (x / patch_size[0], y / patch_size[1]), order=0)
prediction[ind] = pred
else:
input = torch.from_numpy(image).unsqueeze(
0).unsqueeze(0).float().cuda()
net.eval()
with torch.no_grad():
out = torch.argmax(torch.softmax(
net(input), dim=1), dim=1).squeeze(0)
prediction = out.cpu().detach().numpy()
metric_list = []
for i in range(1, classes):
metric_list.append(calculate_metric_percase(
prediction == i, label == i))
return metric_list
def test_single_volume_ds(image, label, net, classes, patch_size=[256, 256]):
image, label = image.squeeze(0).cpu().detach(
).numpy(), label.squeeze(0).cpu().detach().numpy()
if len(image.shape) == 3:
prediction = np.zeros_like(label)
for ind in range(image.shape[0]):
slice = image[ind, :, :]
x, y = slice.shape[0], slice.shape[1]
slice = zoom(
slice, (patch_size[0] / x, patch_size[1] / y), order=0)
input = torch.from_numpy(slice).unsqueeze(
0).unsqueeze(0).float().cuda()
net.eval()
with torch.no_grad():
output_main, _, _, _ = net(input)
out = torch.argmax(torch.softmax(
output_main, dim=1), dim=1).squeeze(0)
out = out.cpu().detach().numpy()
pred = zoom(
out, (x / patch_size[0], y / patch_size[1]), order=0)
prediction[ind] = pred
else:
input = torch.from_numpy(image).unsqueeze(
0).unsqueeze(0).float().cuda()
net.eval()
with torch.no_grad():
output_main, _, _, _ = net(input)
out = torch.argmax(torch.softmax(
output_main, dim=1), dim=1).squeeze(0)
prediction = out.cpu().detach().numpy()
metric_list = []
for i in range(1, classes):
metric_list.append(calculate_metric_percase(
prediction == i, label == i))
return metric_list
def test_single_volume_cct(image, label, net, classes, patch_size=[256, 256]):
image, label = image.squeeze(0).cpu().detach(
).numpy(), label.squeeze(0).cpu().detach().numpy()
if len(image.shape) == 3:
prediction = np.zeros_like(label)
for ind in range(image.shape[0]):
slice = image[ind, :, :]
x, y = slice.shape[0], slice.shape[1]
slice = zoom(
slice, (patch_size[0] / x, patch_size[1] / y), order=0)
input = torch.from_numpy(slice).unsqueeze(
0).unsqueeze(0).float().cuda()
net.eval()
with torch.no_grad():
output_main = net(input)[0]
out = torch.argmax(torch.softmax(
output_main, dim=1), dim=1).squeeze(0)
out = out.cpu().detach().numpy()
pred = zoom(
out, (x / patch_size[0], y / patch_size[1]), order=0)
prediction[ind] = pred
else:
input = torch.from_numpy(image).unsqueeze(
0).unsqueeze(0).float().cuda()
net.eval()
with torch.no_grad():
output_main, _, _, _ = net(input)
out = torch.argmax(torch.softmax(
output_main, dim=1), dim=1).squeeze(0)
prediction = out.cpu().detach().numpy()
metric_list = []
for i in range(1, classes):
metric_list.append(calculate_metric_percase(
prediction == i, label == i))
return metric_list