
How to print a tree

{-# LANGUAGE StandaloneDeriving #-}

data Tree a = Leaf a | Branch [Tree a]

Many options:

deriving (Show)

instance (Show a) => Show (Tree a) where
show :: Tree a -> String
show (Leaf x) = "Leaf (" ++ show x ++ ")"
show (Branch ts) = "Branch " ++ show ts

deriving instance (Show a) => Show (Tree a)

Discussion
▶ Not all at once

▶ OverlappingInstances
▶ See also



How to print a tree

{-# LANGUAGE StandaloneDeriving #-}

data Tree a = Leaf a | Branch [Tree a]

Many options:

deriving (Show)

instance (Show a) => Show (Tree a) where
show :: Tree a -> String
show (Leaf x) = "Leaf (" ++ show x ++ ")"
show (Branch ts) = "Branch " ++ show ts

deriving instance (Show a) => Show (Tree a)

Discussion
▶ Not all at once

▶ OverlappingInstances
▶ See also



How to print a tree

{-# LANGUAGE StandaloneDeriving #-}

data Tree a = Leaf a | Branch [Tree a]

Many options:

deriving (Show)

instance (Show a) => Show (Tree a) where
show :: Tree a -> String
show (Leaf x) = "Leaf (" ++ show x ++ ")"
show (Branch ts) = "Branch " ++ show ts

deriving instance (Show a) => Show (Tree a)

Discussion
▶ Not all at once

▶ OverlappingInstances
▶ See also



How to print a tree

{-# LANGUAGE StandaloneDeriving #-}

data Tree a = Leaf a | Branch [Tree a]

Many options:

deriving (Show)

instance (Show a) => Show (Tree a) where
show :: Tree a -> String
show (Leaf x) = "Leaf (" ++ show x ++ ")"
show (Branch ts) = "Branch " ++ show ts

deriving instance (Show a) => Show (Tree a)

Discussion
▶ Not all at once

▶ OverlappingInstances
▶ See also



How to print a tree
{-# LANGUAGE StandaloneDeriving #-}

data Tree a = Leaf a | Branch [Tree a]

Many options:

deriving (Show)

instance (Show a) => Show (Tree a) where
show :: Tree a -> String
show (Leaf x) = "Leaf (" ++ show x ++ ")"
show (Branch ts) = "Branch " ++ show ts

deriving instance (Show a) => Show (Tree a)

Discussion
▶ Not all at once

▶ OverlappingInstances
▶ See also



How to print a tree
{-# LANGUAGE StandaloneDeriving #-}

data Tree a = Leaf a | Branch [Tree a]

Many options:

deriving (Show)

instance (Show a) => Show (Tree a) where
show :: Tree a -> String
show (Leaf x) = "Leaf (" ++ show x ++ ")"
show (Branch ts) = "Branch " ++ show ts

deriving instance (Show a) => Show (Tree a)

Discussion
▶ Not all at once

▶ OverlappingInstances
▶ See also



How to print a tree
{-# LANGUAGE StandaloneDeriving #-}

data Tree a = Leaf a | Branch [Tree a]

Many options:

deriving (Show)

instance (Show a) => Show (Tree a) where
show :: Tree a -> String
show (Leaf x) = "Leaf (" ++ show x ++ ")"
show (Branch ts) = "Branch " ++ show ts

deriving instance (Show a) => Show (Tree a)

Discussion
▶ Not all at once

▶ OverlappingInstances
▶ See also



How to print a tree
{-# LANGUAGE StandaloneDeriving #-}

data Tree a = Leaf a | Branch [Tree a]

Many options:

deriving (Show)

instance (Show a) => Show (Tree a) where
show :: Tree a -> String
show (Leaf x) = "Leaf (" ++ show x ++ ")"
show (Branch ts) = "Branch " ++ show ts

deriving instance (Show a) => Show (Tree a)

Discussion
▶ Not all at once

▶ OverlappingInstances
▶ See also



How to print a tree
{-# LANGUAGE StandaloneDeriving #-}

data Tree a = Leaf a | Branch [Tree a]

Many options:

deriving (Show)

instance (Show a) => Show (Tree a) where
show :: Tree a -> String
show (Leaf x) = "Leaf (" ++ show x ++ ")"
show (Branch ts) = "Branch " ++ show ts

deriving instance (Show a) => Show (Tree a)

Discussion
▶ Not all at once

▶ OverlappingInstances
▶ Choose max. 1!

▶ See also



How to print a tree
{-# LANGUAGE StandaloneDeriving #-}

data Tree a = Leaf a | Branch [Tree a]

Many options:

deriving (Show)

instance (Show a) => Show (Tree a) where
show :: Tree a -> String
show (Leaf x) = "Leaf (" ++ show x ++ ")"
show (Branch ts) = "Branch " ++ show ts

deriving instance (Show a) => Show (Tree a)

Discussion
▶ Not all at once

▶ OverlappingInstances
▶ See also



How to print a tree
{-# LANGUAGE StandaloneDeriving #-}

data Tree a = Leaf a | Branch [Tree a]

Many options:

deriving (Show)

instance (Show a) => Show (Tree a) where
show :: Tree a -> String
show (Leaf x) = "Leaf (" ++ show x ++ ")"
show (Branch ts) = "Branch " ++ show ts

deriving instance (Show a) => Show (Tree a)

Discussion
▶ Not all at once

▶ OverlappingInstances
▶ See also



How to print a tree
{-# LANGUAGE StandaloneDeriving #-}

data Tree a = Leaf a | Branch [Tree a]

Many options:

deriving (Show)

instance (Show a) => Show (Tree a) where
show :: Tree a -> String
show (Leaf x) = "Leaf (" ++ show x ++ ")"
show (Branch ts) = "Branch " ++ show ts

deriving instance (Show a) => Show (Tree a)

Discussion
▶ Not all at once

▶ OverlappingInstances
▶ See also

▶ Tweag on run-time instances

https://www.tweag.io/blog/2021-04-08-capabilities-ad-hoc-interpreters/

