DROP Function contains several Built-in Multivariate Functions and Solvers.
-
Definition DROP Function Definition Package contains the Function Execution Ancillary Support Objects.
-
E2ERF DROP Function E2ERF Package contains the E2 erf and erf-1 Implementations.
-
E2ERFC DROP Function E2ERFC Package contains the E2 erfc Estimation Function Implementations.
-
ENERF DROP Function ENERF Package contains En erf Series and Generators.
-
Matrix DROP Function Matrix Package contains Support for Functions of Matrices.
-
R1 To R1 DROP Function R1 Package contains several Built-in R1 To R1 Functions.
-
R1 To R1 Solver DROP Function R1 Solver Package contains several Built-in R1 To R1 Solvers.
-
Rd To R1 DROP Function Rd To R1 Package contains the Suite of Built-in Rd To R1 Functions.
-
Rd To R1 Descent DROP Function Rd To R1 Descent Package implements the Suite of Rd To R1 Gradient Descent Techniques.
-
Rd To R1 Solver DROP Function Rd To R1 Solver Package implements the Suite of Built-in Rd To R1 Solvers.
-
Abramowitz, M., and I. A. Stegun (2007): Handbook of Mathematics Functions Dover Book on Mathematics
-
Albanese, C., S. Caenazzo, and O. Frankel (2017): Regression Sensitivities for Initial Margin Calculations https://papers.ssrn.com/sol3/papers.cfm?abstract_id=2763488 eSSRN
-
Almgren, R. F., and N. Chriss (2000): Optimal Execution of Portfolio Transactions Journal of Risk 3 (2) 5-39
-
Almgren, R. F. (2009): Optimal Trading in a Dynamic Market https://www.math.nyu.edu/financial_mathematics/content/02_financial/2009-2.pdf
-
Almgren, R. F. (2012): Optimal Trading with Stochastic Liquidity and Volatility SIAM Journal of Financial Mathematics 3 (1) 163-181
-
Andersen and Piterbarg (2010): Interest Rate Modeling (3 Volumes) Atlantic Financial Press
-
Andersen, L. B. G., M. Pykhtin, and A. Sokol (2017): Credit Exposure in the Presence of Initial Margin https://papers.ssrn.com/sol3/papers.cfm?abstract_id=2806156 eSSRN
-
Anfuso, F., D. Aziz, P. Giltinan, and K. Loukopoulus (2017): A Sound Modeling and Back-testing Framework for Forecasting Initial Margin Requirements https://papers.ssrn.com/sol3/papers.cfm?abstract_id=2716279 eSSRN
-
Arfken, G. B., and H. J. Weber (2005): Mathematical Methods for Physicists 6th Edition Harcourt San Diego
-
Armijo, L. (1966): Minimization of Functions having Lipschitz-Continuous First Partial Derivatives Pacific Journal of Mathematics 16 (1) 1-3
-
Bogoliubov, N. N., and D. P. Sankevich (1994): N. N. Bogoliubov and Statistical Mechanics Russian Mathematical Surveys 49 (5) 19-49
-
Boyd, S., and L. van den Berghe (2009): Convex Optimization Cambridge University Press Cambridge UK
-
Caspers, P., P. Giltinan, R. Lichters, and N. Nowaczyk (2017): Forecasting Initial Margin Requirements; A Model Evaluation https://papers.ssrn.com/sol3/papers.cfm?abstract_id=2911167 eSSRN
-
Chang, S. H., P. C. Cosman, L. B. Milstein (2011): Chernoff-Type Bounds for Gaussian Error Function IEEE Transactions on Communications 59 (11) 2939-2944
-
Claerbout, J. F. (1985): Fundamentals of Geo-physical Data Processing Blackwell Scientific
-
Cody, W. J. (1991): Algorithm 715: SPECFUN; A Portable FORTRAN Package of Special Function Routines and Test Drivers ACM Transactions on Mathematical Software 19 (1) 22-32
-
Davis, P. J. (1959): Leonhard Euler's Integral: A Historical Profile of the Gamma Function American Mathematical Monthly 66 (10) 849-869
-
Eustaquio, R., E. Karas, and A. Ribeiro (2008): Constraint Qualification for Nonlinear Programming Federal University of Parana
-
Holubec, V., K. Kroy, and S. Steffenoni (2019): Physically Consistent Numerical Solver for Time-dependent Fokker-Planck Equations Physical Review E 99 (4) 032117
-
Horn, R. A., and C. R. Johnson (1991): Topics in Matrix Analysis Cambridge University Press
-
International Swaps and Derivatives Association (2017): SIMM v2.0 Methodology https://www.isda.org/a/oFiDE/isda-simm-v2.pdf
-
Kadanoff, L. P. (2000): Statistical Physics: Statics, Dynamics, and Re-normalization World Scientific
-
Karush, A. (1939): Minima of Functions of Several Variables with Inequalities as Side Constraints University of Chicago Chicago IL
-
Kuhn, H. W., and A. W. Tucker (1951): Nonlinear Programming Proceedings of the Second Berkeley Symposium University of California Berkeley CA 481-492
-
Nocedal, J., and S. Wright (1999): Numerical Optimization Wiley
-
Ottinger, H. C. (1996): Stochastic Processes in Polymeric Fluids Springer-Verlag Berlin-Heidelberg
-
Rebonato, R., K. McKay, and R. White (2009): The SABR/LIBOR Market Model: Pricing, Calibration, and Hedging for Complex Interest-Rate Derivatives John Wiley and Sons
-
Ruszczynski, A. (2006): Nonlinear Optimization Princeton University Press Princeton NJ
-
Schwerdtfeger, A. (1938): Les Fonctions de Matrices: Les Fonctions Univalentes I Hermann Paris, France
-
Schopf, H. M., and P. H. Supancic (2014): On Burmann Theorem and its Application to Problems of Linear and Non-linear Heat Transfer and Diffusion https://www.mathematica-journal.com/2014/11/on-burmanns-theorem-and-its-application-to-problems-of-linear-and-nonlinear-heat-transfer-and-diffusion/#more-39602/
-
Sylvester, J. J. (1883): On the Equation to the Secular Inequalities in the Planetary Theory The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science 16 (100) 267-269
-
Temme N. M. (1996): Special Functions: An Introduction to the Classical Functions of Mathematical Physics 2nd Edition Wiley New York
-
Watson, G. N. (1995): A Treatise on the Theory of Bessel Functions Cambridge University Press
-
Whitaker, E. T., and G. N. Watson (1996): A Course on Modern Analysis Cambridge University Press New York
-
Wikipedia (2019): Bessel Function https://en.wikipedia.org/wiki/Bessel_function
-
Wikipedia (2019): Beta Function https://en.wikipedia.org/wiki/Beta_function
-
Wikipedia (2019): Error Function https://en.wikipedia.org/wiki/Error_function
-
Wikipedia (2019): Fokker-Planck Equation https://en.wikipedia.org/wiki/Fokker%E2%80%93Planck_equation
-
Wikipedia (2019): Gamma Function https://en.wikipedia.org/wiki/Gamma_function
-
Wikipedia (2019): Sylvester Formula https://en.wikipedia.org/wiki/Sylvester%27s_formula
-
Wolfe, P. (1969): Convergence Conditions for Ascent Methods SIAM Review 11 (2) 226-235
-
Wolfe, P. (1971): Convergence Conditions for Ascent Methods; II: Some Corrections SIAM Review 13 (2) 185-188
- Main => https://lakshmidrip.github.io/DROP/
- Wiki => https://github.com/lakshmiDRIP/DROP/wiki
- GitHub => https://github.com/lakshmiDRIP/DROP
- Repo Layout Taxonomy => https://github.com/lakshmiDRIP/DROP/blob/master/Taxonomy.md
- Javadoc => https://lakshmidrip.github.io/DROP/Javadoc/index.html
- Technical Specifications => https://github.com/lakshmiDRIP/DROP/tree/master/Docs/Internal
- Release Versions => https://lakshmidrip.github.io/DROP/version.html
- Community Credits => https://lakshmidrip.github.io/DROP/credits.html
- Issues Catalog => https://github.com/lakshmiDRIP/DROP/issues