|
| 1 | +// RUN: mlir-opt %s \ |
| 2 | +// RUN: -transform-interpreter -test-transform-dialect-erase-schedule \ |
| 3 | +// RUN: -one-shot-bufferize="bufferize-function-boundaries" -canonicalize \ |
| 4 | +// RUN: -arm-sme-vector-legalization -canonicalize -cse \ |
| 5 | +// RUN: -convert-vector-to-arm-sme -arm-sme-outer-product-fusion \ |
| 6 | +// RUN: -allocate-arm-sme-tiles -convert-arm-sme-to-scf \ |
| 7 | +// RUN: -enable-arm-streaming="streaming-mode=streaming-locally za-mode=new-za only-if-required-by-ops" \ |
| 8 | +// RUN: -convert-vector-to-scf=full-unroll -convert-arm-sme-to-llvm \ |
| 9 | +// RUN: -test-lower-to-llvm | \ |
| 10 | +// RUN: %mcr_aarch64_cmd \ |
| 11 | +// RUN: -e=main -entry-point-result=void \ |
| 12 | +// RUN: -march=aarch64 -mattr="+sve,+sme" \ |
| 13 | +// RUN: -shared-libs=%mlir_runner_utils,%mlir_c_runner_utils,%arm_sme_abi_shlib,%mlir_arm_runner_utils | \ |
| 14 | +// RUN: FileCheck %s |
| 15 | + |
| 16 | +/// This is very similar to the SME multi-tile-matmul.mlir test, except that it |
| 17 | +/// tests a mixed i8 to i32 matmul and outer product fusion which fuses 16 |
| 18 | +/// outer products (four per tile) into four 4-way outer products. |
| 19 | + |
| 20 | +/// NOTE: QEMU gives incorrect result for SME SMOPA 4-way outer product |
| 21 | +/// instruction (version <= 8.2.0, latest version at time of writing), see: |
| 22 | +/// https://gitlab.com/qemu-project/qemu/-/issues/2083 |
| 23 | +/// This test is expected to fail until a fixed version of QEMU can be used. |
| 24 | + |
| 25 | +/// FIXME: Remove the 'XFAIL' below once a fixed QEMU version is available |
| 26 | +/// (and installed on CI buildbot). |
| 27 | +/// XFAIL: * |
| 28 | + |
| 29 | +func.func @matmul_i8_to_i32(%A : tensor<?x?xi8>, %B : tensor<?x?xi8>, %C : tensor<?x?xi32>) { |
| 30 | + %res = linalg.matmul ins(%A, %B: tensor<?x?xi8>, tensor<?x?xi8>) |
| 31 | + outs(%C: tensor<?x?xi32>) -> tensor<?x?xi32> |
| 32 | + %xf = tensor.cast %res : tensor<?x?xi32> to tensor<*xi32> |
| 33 | + call @printMemrefI32(%xf) : (tensor<*xi32>) -> () |
| 34 | + return |
| 35 | +} |
| 36 | + |
| 37 | +func.func @main() { |
| 38 | + /// Set SVL to 128-bit. This ensures this small matmul will use all four |
| 39 | + /// 32-bit SME virtual tiles. |
| 40 | + %c128 = arith.constant 128 : i32 |
| 41 | + func.call @setArmSVLBits(%c128) : (i32) -> () |
| 42 | + |
| 43 | + %c0 = arith.constant 0 : i32 |
| 44 | + %c7 = arith.constant 7 : index |
| 45 | + |
| 46 | + %A = arith.constant dense<[ |
| 47 | + [1, 8, 15, 22, 29, 36, 43, 50, 57, 64, 71, 78, 85], |
| 48 | + [2, 9, 16, 23, 30, 37, 44, 51, 58, 65, 72, 79, 86], |
| 49 | + [3, 10, 17, 24, 31, 38, 45, 52, 59, 66, 73, 80, 87], |
| 50 | + [4, 11, 18, 25, 32, 39, 46, 53, 60, 67, 74, 81, 88], |
| 51 | + [5, 12, 19, 26, 33, 40, 47, 54, 61, 68, 75, 82, 89], |
| 52 | + [6, 13, 20, 27, 34, 41, 48, 55, 62, 69, 76, 83, 90], |
| 53 | + [7, 14, 21, 28, 35, 42, 49, 56, 63, 70, 77, 84, 91] |
| 54 | + ]> : tensor<7x13xi8> |
| 55 | + |
| 56 | + %B_init = tensor.empty() : tensor<13x7xi8> |
| 57 | + %B = linalg.transpose ins(%A: tensor<7x13xi8>) |
| 58 | + outs(%B_init: tensor<13x7xi8>) permutation = [1, 0] |
| 59 | + |
| 60 | + %A_dyn = tensor.cast %A : tensor<7x13xi8> to tensor<?x?xi8> |
| 61 | + %B_dyn = tensor.cast %B : tensor<13x7xi8> to tensor<?x?xi8> |
| 62 | + |
| 63 | + %C_init = bufferization.alloc_tensor(%c7, %c7) : tensor<?x?xi32> |
| 64 | + %C = linalg.fill ins(%c0 : i32) outs(%C_init : tensor<?x?xi32>) -> tensor<?x?xi32> |
| 65 | + |
| 66 | + // CHECK: Unranked Memref {{.*}} rank = 2 offset = 0 sizes = [7, 7] strides = [7, 1] data = |
| 67 | + // CHECK: [32955, 33514, 34073, 34632, 35191, 35750, 36309] |
| 68 | + // CHECK: [33514, 34086, 34658, 35230, 35802, 36374, 36946] |
| 69 | + // CHECK: [34073, 34658, 35243, 35828, 36413, 36998, 37583] |
| 70 | + // CHECK: [34632, 35230, 35828, 36426, 37024, 37622, 38220] |
| 71 | + // CHECK: [35191, 35802, 36413, 37024, 37635, 38246, 38857] |
| 72 | + // CHECK: [35750, 36374, 36998, 37622, 38246, 38870, 39494] |
| 73 | + // CHECK: [36309, 36946, 37583, 38220, 38857, 39494, 40131] |
| 74 | + call @matmul_i8_to_i32(%A_dyn, %B_dyn, %C) : (tensor<?x?xi8>, tensor<?x?xi8>, tensor<?x?xi32>) -> () |
| 75 | + |
| 76 | + return |
| 77 | +} |
| 78 | + |
| 79 | +module attributes {transform.with_named_sequence} { |
| 80 | + transform.named_sequence @__transform_main(%module : !transform.any_op {transform.consumed}) { |
| 81 | + %matmul = transform.structured.match ops{["linalg.matmul"]} in %module |
| 82 | + : (!transform.any_op) -> !transform.any_op |
| 83 | + |
| 84 | + // Step 1: Tile for size [8] x [8] (unrolled by 4), which corresponds to |
| 85 | + // (2 x SVLs) x (2 x SVLs), where SVLs is the number of 32-bit elements in a |
| 86 | + // vector of SVL bits. This uses all four 32-bit SME virtual tiles. |
| 87 | + %tiled_linalg_op, %loop_i, %loop_j, %loop_k = transform.structured.tile_using_for %matmul[[8], [8], 4] |
| 88 | + : (!transform.any_op) -> (!transform.any_op, !transform.op<"scf.for">, !transform.op<"scf.for">, !transform.op<"scf.for">) |
| 89 | + |
| 90 | + // Step 2: Vectorize. |
| 91 | + transform.structured.vectorize %tiled_linalg_op vector_sizes [[8], [8], 4] |
| 92 | + : !transform.any_op |
| 93 | + |
| 94 | + // Step 3: Bufferize ahead of TransferReadDropUnitDimsPattern, which |
| 95 | + // currently only supports memrefs. |
| 96 | + %bufferize = transform.bufferization.one_shot_bufferize %module |
| 97 | + {bufferize_function_boundaries=true} : (!transform.any_op) -> !transform.any_op |
| 98 | + |
| 99 | + %func = transform.structured.match ops{["func.func"]} in %bufferize |
| 100 | + : (!transform.any_op) -> !transform.any_op |
| 101 | + |
| 102 | + // Step 4: Lower vector.multi_reduction to vector.contract (+ some helpful patterns). |
| 103 | + transform.apply_patterns to %func { |
| 104 | + transform.apply_patterns.vector.lower_masked_transfers |
| 105 | + transform.apply_patterns.vector.transfer_permutation_patterns |
| 106 | + transform.apply_patterns.vector.reduction_to_contract |
| 107 | + } : !transform.any_op |
| 108 | + |
| 109 | + // Step 5: Lower vector.contract to vector.outerproduct. Also drop unit |
| 110 | + // dims, specifically to prevent vector.transfer_read of vector<[8]x1xi32>, |
| 111 | + // which can't be lowered in generic path. |
| 112 | + transform.apply_patterns to %func { |
| 113 | + transform.apply_patterns.vector.lower_contraction lowering_strategy = "outerproduct" |
| 114 | + transform.apply_patterns.vector.lower_masks |
| 115 | + transform.apply_patterns.vector.rank_reducing_subview_patterns |
| 116 | + } : !transform.any_op |
| 117 | + |
| 118 | + transform.yield |
| 119 | + } |
| 120 | +} |
| 121 | + |
| 122 | +func.func private @printMemrefI32(%ptr : tensor<*xi32>) |
| 123 | +func.func private @setArmSVLBits(%bits : i32) |
0 commit comments