Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Issue running DA analysis #26

Open
carl-coyle opened this issue Nov 17, 2020 · 1 comment
Open

Issue running DA analysis #26

carl-coyle opened this issue Nov 17, 2020 · 1 comment

Comments

@carl-coyle
Copy link

Hi there I am trying to run a DA analysis (method DA-GLMM). However when I run the analysis I receive the error as seen below. Not too sure whats going wrong.

Session Info
**R version 4.0.3 (2020-10-10)
Platform: x86_64-apple-darwin17.0 (64-bit)
Running under: macOS High Sierra 10.13.6

Matrix products: default
BLAS: /System/Library/Frameworks/Accelerate.framework/Versions/A/Frameworks/vecLib.framework/Versions/A/libBLAS.dylib
LAPACK: /Library/Frameworks/R.framework/Versions/4.0/Resources/lib/libRlapack.dylib

locale:
[1] en_GB.UTF-8/en_GB.UTF-8/en_GB.UTF-8/C/en_GB.UTF-8/en_GB.UTF-8

attached base packages:
[1] parallel stats4 stats graphics grDevices utils datasets methods base

other attached packages:
[1] lme4_1.1-25 Matrix_1.2-18 diffcyt_1.10.0 cowplot_1.1.0 CATALYST_1.14.0 SingleCellExperiment_1.12.0
[7] SummarizedExperiment_1.20.0 Biobase_2.50.0 GenomicRanges_1.42.0 GenomeInfoDb_1.26.0 IRanges_2.24.0 S4Vectors_0.28.0
[13] BiocGenerics_0.36.0 MatrixGenerics_1.2.0 matrixStats_0.57.0 readxl_1.3.1 forcats_0.5.0 stringr_1.4.0
[19] dplyr_1.0.2 purrr_0.3.4 readr_1.4.0 tidyr_1.1.2 tibble_3.0.4 ggplot2_3.3.2
[25] tidyverse_1.3.0 CytoML_2.2.1 flowWorkspace_4.2.0 flowCore_2.2.0

loaded via a namespace (and not attached):
[1] backports_1.2.0 circlize_0.4.11 drc_3.0-1 plyr_1.8.6 igraph_1.2.6 ConsensusClusterPlus_1.54.0
[7] splines_4.0.3 BiocParallel_1.24.1 scater_1.18.3 TH.data_1.0-10 digest_0.6.27 viridis_0.5.1
[13] fansi_0.4.1 magrittr_1.5 cluster_2.1.0 limma_3.46.0 aws.signature_0.6.0 openxlsx_4.2.3
[19] ComplexHeatmap_2.6.2 modelr_0.1.8 RcppParallel_5.0.2 sandwich_3.0-0 cytolib_2.2.0 jpeg_0.1-8.1
[25] colorspace_2.0-0 rvest_0.3.6 ggrepel_0.8.2 haven_2.3.1 xfun_0.19 crayon_1.3.4
[31] RCurl_1.98-1.2 jsonlite_1.7.1 hexbin_1.28.1 graph_1.68.0 survival_3.2-7 zoo_1.8-8
[37] glue_1.4.2 gtable_0.3.0 nnls_1.4 zlibbioc_1.36.0 XVector_0.30.0 GetoptLong_1.0.4
[43] DelayedArray_0.16.0 ggcyto_1.18.0 BiocSingular_1.6.0 car_3.0-10 Rgraphviz_2.34.0 shape_1.4.5
[49] abind_1.4-5 scales_1.1.1 mvtnorm_1.1-1 edgeR_3.32.0 DBI_1.1.0 Rcpp_1.0.5
[55] plotrix_3.7-8 viridisLite_0.3.0 clue_0.3-57 rsvd_1.0.3 foreign_0.8-80 FlowSOM_1.22.0
[61] tsne_0.1-3 httr_1.4.2 RColorBrewer_1.1-2 ellipsis_0.3.1 farver_2.0.3 pkgconfig_2.0.3
[67] XML_3.99-0.5 scuttle_1.0.0 uwot_0.1.9 dbplyr_2.0.0 locfit_1.5-9.4 labeling_0.4.2
[73] tidyselect_1.1.0 rlang_0.4.8 reshape2_1.4.4 munsell_0.5.0 cellranger_1.1.0 tools_4.0.3
[79] cli_2.1.0 generics_0.1.0 broom_0.7.2 ggridges_0.5.2 aws.s3_0.3.21 yaml_2.2.1
[85] knitr_1.30 fs_1.5.0 zip_2.1.1 nlme_3.1-150 RBGL_1.66.0 sparseMatrixStats_1.2.0
[91] xml2_1.3.2 compiler_4.0.3 rstudioapi_0.13 beeswarm_0.2.3 curl_4.3 png_0.1-7
[97] reprex_0.3.0 statmod_1.4.35 stringi_1.5.3 RSpectra_0.16-0 lattice_0.20-41 nloptr_1.2.2.2
[103] vctrs_0.3.4 pillar_1.4.6 lifecycle_0.2.0 BiocManager_1.30.10 GlobalOptions_0.1.2 RcppAnnoy_0.0.17
[109] BiocNeighbors_1.8.1 irlba_2.3.3 data.table_1.13.2 bitops_1.0-6 R6_2.5.0 latticeExtra_0.6-29
[115] gridExtra_2.3 RProtoBufLib_2.2.0 rio_0.5.16 vipor_0.4.5 codetools_0.2-18 boot_1.3-25
[121] MASS_7.3-53 gtools_3.8.2 assertthat_0.2.1 rjson_0.2.20 withr_2.3.0 multcomp_1.4-15
[127] GenomeInfoDbData_1.2.4 hms_0.5.3 ncdfFlow_2.36.0 grid_4.0.3 beachmat_2.6.1 minqa_1.2.4
[133] DelayedMatrixStats_1.12.0 carData_3.0-4 Cairo_1.5-12.2 Rtsne_0.15 lubridate_1.7.9.2 base64enc_0.1-3
[139] ggbeeswarm_0.6.0**
Screen Shot 2020-11-17 at 12 14 11

@markrobinsonuzh
Copy link
Collaborator

Dear @carl-coyle,

Could you give a few more details on the objects you are sending to diffcyt()? e.g., what is your experimental setup? What contrasts are specified?

My guess is that your model is over-parameterized, but it's hard to say without more details.

Cheers, Mark

Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment
Labels
None yet
Projects
None yet
Development

No branches or pull requests

2 participants