-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathfit.py
189 lines (144 loc) · 4.84 KB
/
fit.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
import logging
import math
import time
from types import SimpleNamespace
from copy import deepcopy
from collections import defaultdict
import numpy as np
import torch
logging.basicConfig(
format="[%(asctime)s] %(message)s",
datefmt="%m/%d/%Y %I:%M:%S %p",
level=logging.INFO,
)
class DL:
def __init__(self, xs, ys, batch_size, device):
self._xs = xs.to(device)
self._ys = ys.to(device)
self._bs = batch_size
self._counter = 0
def __iter__(self):
return self
def __next__(self):
if self._counter * self._bs >= len(self._xs):
perm = torch.randperm(self._xs.size(0))
self._xs = self._xs[perm]
self._ys = self._ys[perm]
self._counter = 0
raise StopIteration
x_, y_ = self._xs[self._counter * self._bs: (self._counter + 1) * self._bs], \
self._ys[self._counter * self._bs: (self._counter + 1) * self._bs]
self._counter += 1
return x_, y_
def __len__(self):
return self._xs.shape[0] // self._bs
@property
def dataset(self):
return self._xs
@torch.no_grad()
def get_pred(model,
dl,
device,
test_batch_size=100,
):
logits, labels = [], []
for xb, yb in dl:
xb, yb = xb.to(device), yb.to(device)
bs = xb.shape[0]
ybs, outs = [], []
if not isinstance(model, list):
test_batch_size = min(test_batch_size, model.num_test_samples)
for _ in range(model.num_test_samples // test_batch_size):
xb_new = xb.repeat(test_batch_size, *[1] * (xb.ndim - 1))
out = model(xb_new).cpu().view(test_batch_size, bs, -1)
outs.append(out)
outs = torch.cat(outs, 0)
else:
outs = torch.stack([s(xb) for s in model]).cpu()
out = torch.logsumexp(outs, 0).sub_(math.log(outs.size(0)))
logits.append(out)
labels.append(yb.cpu())
return torch.cat(logits, 0), torch.cat(labels, 0)
@torch.no_grad()
def get_loss(model,
loss_func,
dl,
device):
logits, labels = get_pred(model, dl, device)
loss = loss_func(logits, labels, reduction="none")
hits = (logits.argmax(-1) == labels).float()
acc = hits.mean().item()*100
er = 100 - acc
loss = loss.mean().item()
return {'loss': loss,
'er': er}
@torch.no_grad()
def fit(model,
data,
loss_func,
num_updates,
keep_curve,
device,
log_steps=200,
eval_log_steps=10000,
num_burnin_steps=10000):
models = []
ts = []
train_outputs = []
valid_outputs = []
data_iter = iter(data.train_dl)
t0 = start_time = time.time()
for i in range(1, num_updates + 1):
if keep_curve and (i % eval_log_steps == 0 or i==1):
model.eval()
t0 = time.time()
valid_output = get_loss(
models if len(models) > 0 else model,
loss_func,
data.valid_dl,
device,
)
valid_outputs.append(valid_output)
t1 = time.time()
logging.info(
f"EVALUATE VAL NLL {valid_output['loss']:.3f} "
f"VAL ERR {valid_output['er']:.2f} "
f"EVAL TIME {t1 - t0:.2f} sec")
model.train()
try:
xb, yb = next(data_iter)
except StopIteration:
data_iter = iter(data.train_dl)
xb, yb = map(lambda x: x.to(device, non_blocking=True),
(xb, yb))
output = model.step(xb, yb, loss_func)
output['t'] = time.time()-start_time
train_outputs.append(output)
if i % log_steps == 0:
passed_time = time.time() - t0
ts.append(passed_time / log_steps)
rolling = defaultdict(list)
for item in train_outputs[-log_steps:]:
for k, v in item.items():
rolling[k].append(v)
summary = ' '.join([f"{k}: {np.mean(v):.3f}"
for k, v in rolling.items()])
logging.info(f"STEP {i} {summary} "
f"TIME/STEP {np.mean(ts[-log_steps:]):.3f} sec")
t0 = time.time()
model.eval()
t0 = time.time()
test_results = get_loss(
models if len(models)>0 else model,
loss_func,
data.valid_dl,
device,
)
t1 = time.time()
logging.info(f"Evaluation took {t1 - t0:.2f} sec.")
eval_time = time.time() - t1
return SimpleNamespace(**test_results,
**{k:np.mean(v) for k, v in rolling.items()},
eval_time=eval_time,
train_outputs=train_outputs,
valid_outputs=valid_outputs)