Skip to content

Commit b3490cb

Browse files
authored
CLN: deprivatize factorize_from_iterable (#29377)
1 parent 9918158 commit b3490cb

File tree

4 files changed

+16
-16
lines changed

4 files changed

+16
-16
lines changed

pandas/core/arrays/categorical.py

Lines changed: 5 additions & 5 deletions
Original file line numberDiff line numberDiff line change
@@ -2678,7 +2678,7 @@ def _convert_to_list_like(list_like):
26782678
return [list_like]
26792679

26802680

2681-
def _factorize_from_iterable(values):
2681+
def factorize_from_iterable(values):
26822682
"""
26832683
Factorize an input `values` into `categories` and `codes`. Preserves
26842684
categorical dtype in `categories`.
@@ -2716,9 +2716,9 @@ def _factorize_from_iterable(values):
27162716
return codes, categories
27172717

27182718

2719-
def _factorize_from_iterables(iterables):
2719+
def factorize_from_iterables(iterables):
27202720
"""
2721-
A higher-level wrapper over `_factorize_from_iterable`.
2721+
A higher-level wrapper over `factorize_from_iterable`.
27222722
27232723
*This is an internal function*
27242724
@@ -2733,9 +2733,9 @@ def _factorize_from_iterables(iterables):
27332733
27342734
Notes
27352735
-----
2736-
See `_factorize_from_iterable` for more info.
2736+
See `factorize_from_iterable` for more info.
27372737
"""
27382738
if len(iterables) == 0:
27392739
# For consistency, it should return a list of 2 lists.
27402740
return [[], []]
2741-
return map(list, zip(*(_factorize_from_iterable(it) for it in iterables)))
2741+
return map(list, zip(*(factorize_from_iterable(it) for it in iterables)))

pandas/core/indexes/multi.py

Lines changed: 3 additions & 3 deletions
Original file line numberDiff line numberDiff line change
@@ -31,7 +31,7 @@
3131

3232
import pandas.core.algorithms as algos
3333
from pandas.core.arrays import Categorical
34-
from pandas.core.arrays.categorical import _factorize_from_iterables
34+
from pandas.core.arrays.categorical import factorize_from_iterables
3535
import pandas.core.common as com
3636
import pandas.core.indexes.base as ibase
3737
from pandas.core.indexes.base import (
@@ -440,7 +440,7 @@ def from_arrays(cls, arrays, sortorder=None, names=_no_default_names):
440440
if len(arrays[i]) != len(arrays[i - 1]):
441441
raise ValueError("all arrays must be same length")
442442

443-
codes, levels = _factorize_from_iterables(arrays)
443+
codes, levels = factorize_from_iterables(arrays)
444444
if names is _no_default_names:
445445
names = [getattr(arr, "name", None) for arr in arrays]
446446

@@ -562,7 +562,7 @@ def from_product(cls, iterables, sortorder=None, names=_no_default_names):
562562
elif is_iterator(iterables):
563563
iterables = list(iterables)
564564

565-
codes, levels = _factorize_from_iterables(iterables)
565+
codes, levels = factorize_from_iterables(iterables)
566566
if names is _no_default_names:
567567
names = [getattr(it, "name", None) for it in iterables]
568568

pandas/core/reshape/concat.py

Lines changed: 4 additions & 4 deletions
Original file line numberDiff line numberDiff line change
@@ -8,8 +8,8 @@
88

99
from pandas import DataFrame, Index, MultiIndex, Series
1010
from pandas.core.arrays.categorical import (
11-
_factorize_from_iterable,
12-
_factorize_from_iterables,
11+
factorize_from_iterable,
12+
factorize_from_iterables,
1313
)
1414
import pandas.core.common as com
1515
from pandas.core.generic import NDFrame
@@ -604,7 +604,7 @@ def _make_concat_multiindex(indexes, keys, levels=None, names=None):
604604
names = [None] * len(zipped)
605605

606606
if levels is None:
607-
_, levels = _factorize_from_iterables(zipped)
607+
_, levels = factorize_from_iterables(zipped)
608608
else:
609609
levels = [ensure_index(x) for x in levels]
610610
else:
@@ -645,7 +645,7 @@ def _make_concat_multiindex(indexes, keys, levels=None, names=None):
645645
levels.extend(concat_index.levels)
646646
codes_list.extend(concat_index.codes)
647647
else:
648-
codes, categories = _factorize_from_iterable(concat_index)
648+
codes, categories = factorize_from_iterable(concat_index)
649649
levels.append(categories)
650650
codes_list.append(codes)
651651

pandas/core/reshape/reshape.py

Lines changed: 4 additions & 4 deletions
Original file line numberDiff line numberDiff line change
@@ -22,7 +22,7 @@
2222

2323
import pandas.core.algorithms as algos
2424
from pandas.core.arrays import SparseArray
25-
from pandas.core.arrays.categorical import _factorize_from_iterable
25+
from pandas.core.arrays.categorical import factorize_from_iterable
2626
from pandas.core.construction import extract_array
2727
from pandas.core.frame import DataFrame
2828
from pandas.core.index import Index, MultiIndex
@@ -504,7 +504,7 @@ def stack(frame, level=-1, dropna=True):
504504
def factorize(index):
505505
if index.is_unique:
506506
return index, np.arange(len(index))
507-
codes, categories = _factorize_from_iterable(index)
507+
codes, categories = factorize_from_iterable(index)
508508
return categories, codes
509509

510510
N, K = frame.shape
@@ -725,7 +725,7 @@ def _convert_level_number(level_num, columns):
725725
new_names = list(this.index.names)
726726
new_codes = [lab.repeat(levsize) for lab in this.index.codes]
727727
else:
728-
old_codes, old_levels = _factorize_from_iterable(this.index)
728+
old_codes, old_levels = factorize_from_iterable(this.index)
729729
new_levels = [old_levels]
730730
new_codes = [old_codes.repeat(levsize)]
731731
new_names = [this.index.name] # something better?
@@ -949,7 +949,7 @@ def _get_dummies_1d(
949949
from pandas.core.reshape.concat import concat
950950

951951
# Series avoids inconsistent NaN handling
952-
codes, levels = _factorize_from_iterable(Series(data))
952+
codes, levels = factorize_from_iterable(Series(data))
953953

954954
if dtype is None:
955955
dtype = np.uint8

0 commit comments

Comments
 (0)