-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain_HD.py
251 lines (211 loc) · 10.4 KB
/
train_HD.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
#!/usr/bin/python3
from pathlib import Path
import argparse
import itertools
import torchvision
import torchvision.transforms as transforms
from torch.utils.tensorboard import SummaryWriter
from torch.utils.data import DataLoader
from torch.autograd import Variable
from PIL import Image
import torch
from torch import nn
import os
from models.model import LocalEnhancer2Dto3D, LocalEnhancer3Dto2D
from models.model import Discriminator2D, Discriminator3D
from utils import ReplayBuffer
from utils import LambdaLR
from utils import weights_init_normal, load_network
from loader import ImageDataset
scaler = torch.cuda.amp.GradScaler()
os.environ["CUDA_VISIBLE_DEVICES"] = ','.join(map(str, [2, 1, 0]))
parser = argparse.ArgumentParser()
parser.add_argument('--epoch', type=int, default=0, help='starting epoch')
parser.add_argument('--n_epochs', type=int, default=100, help='number of epochs of training')
parser.add_argument('--batchSize', type=int, default=6, help='size of the batches')
parser.add_argument('--dataroot', type=str, default='../datasets/xray2ct/', help='root directory of the dataset')
parser.add_argument('--lr', type=float, default=0.0001, help='initial learning rate')
parser.add_argument('--decay_epoch', type=int, default=50, help='epoch to start linearly decaying the learning rate to 0')
parser.add_argument('--size', type=int, default=128, help='size of the data crop (squared assumed)')
parser.add_argument('--input_nc', type=int, default=3, help='number of channels of input data')
parser.add_argument('--output_nc', type=int, default=1, help='number of channels of output data')
parser.add_argument('--n_cpu', type=int, default=16, help='number of cpu threads to use during batch generation')
parser.add_argument('--fp16', type=bool, default=False, help='use mixed precision or not')
parser.add_argument('--generator_A2B', type=str, default='output/test_64_noide/netG_A2B.pth', help='A2B generator checkpoint file')
parser.add_argument('--generator_B2A', type=str, default='output/test_64_noide/netG_B2A.pth', help='B2A generator checkpoint file')
parser.add_argument('--n_local_enhancers', type=int, default=1, help='number of local enhancers used')
parser.add_argument('--niter_fix_global', type=int, default=20, help='number of epochs that we only train the outmost local enhancer')
opt = parser.parse_args()
print(opt)
###### Definition of variables ######s
# Networks
netG_A2B = LocalEnhancer2Dto3D(opt.input_nc, opt.output_nc, f_maps=16, num_levels=6, n_local_enhancers=opt.n_local_enhancers)
netG_B2A = LocalEnhancer3Dto2D(opt.output_nc, opt.input_nc, f_maps=16, num_levels=6, n_local_enhancers=opt.n_local_enhancers)
netD_A = Discriminator2D(opt.input_nc)
netD_B = Discriminator3D(opt.output_nc)
netG_A2B = nn.DataParallel(netG_A2B)
netG_B2A = nn.DataParallel(netG_B2A)
netD_A = nn.DataParallel(netD_A)
netD_B = nn.DataParallel(netD_B)
netG_A2B.cuda()
netG_B2A.cuda()
netD_A.cuda()
netD_B.cuda()
netG_A2B.apply(weights_init_normal)
netG_B2A.apply(weights_init_normal)
netD_A.apply(weights_init_normal)
netD_B.apply(weights_init_normal)
# load pretrained models
netG_A2B = load_network(netG_A2B, opt.generator_A2B)
netG_B2A = load_network(netG_B2A, opt.generator_B2A)
# Losses
criterion_GAN = torch.nn.MSELoss()
criterion_cycle = torch.nn.L1Loss()
# Freeze global generators
finetune_list = set()
params_dict = dict(netG_A2B.named_parameters())
params_GA2B = []
for key, value in params_dict.items():
if key.startswith('module.model' + str(opt.n_local_enhancers)):
params_GA2B += [value]
finetune_list.add(key)
print('------------- Only training the local enhancer network (for %d epochs) ------------' % opt.niter_fix_global)
print('The layers that are finetuned in G A2B are ', sorted(finetune_list))
finetune_list = set()
params_dict = dict(netG_B2A.named_parameters())
params_GB2A = []
for key, value in params_dict.items():
if key.startswith('module.model' + str(opt.n_local_enhancers)):
params_GB2A += [value]
finetune_list.add(key)
print('------------- Only training the local enhancer network (for %d epochs) ------------' % opt.niter_fix_global)
print('The layers that are finetuned in G B2A are ', sorted(finetune_list))
# Optimizers & LR schedulers
optimizer_G = torch.optim.Adam(itertools.chain(params_GA2B, params_GB2A),
lr=opt.lr, betas=(0.5, 0.999))
optimizer_D_A = torch.optim.Adam(netD_A.parameters(), lr=opt.lr, betas=(0.5, 0.999))
optimizer_D_B = torch.optim.Adam(netD_B.parameters(), lr=opt.lr, betas=(0.5, 0.999))
lr_scheduler_G = torch.optim.lr_scheduler.LambdaLR(optimizer_G, lr_lambda=LambdaLR(opt.n_epochs, opt.epoch, opt.decay_epoch).step)
lr_scheduler_D_A = torch.optim.lr_scheduler.LambdaLR(optimizer_D_A, lr_lambda=LambdaLR(opt.n_epochs, opt.epoch, opt.decay_epoch).step)
lr_scheduler_D_B = torch.optim.lr_scheduler.LambdaLR(optimizer_D_B, lr_lambda=LambdaLR(opt.n_epochs, opt.epoch, opt.decay_epoch).step)
# Inputs & targets memory allocation
Tensor = torch.cuda.FloatTensor
input_A = Tensor(opt.batchSize, opt.input_nc, opt.size, opt.size)
input_B = Tensor(opt.batchSize, opt.output_nc, opt.size, opt.size, opt.size)
target_real = Variable(Tensor(opt.batchSize).fill_(1.0), requires_grad=False)
target_fake = Variable(Tensor(opt.batchSize).fill_(0.0), requires_grad=False)
fake_A_buffer = ReplayBuffer()
fake_B_buffer = ReplayBuffer()
# Dataset loader
transforms_ = [ transforms.Resize(int(opt.size * 1.18), Image.BICUBIC),
transforms.RandomCrop(opt.size),
transforms.ToTensor(),
transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5)) ]
dataloader = DataLoader(ImageDataset(opt.dataroot, transforms_=transforms_, unaligned=True),
batch_size=opt.batchSize, shuffle=True, drop_last=True,
pin_memory=True, num_workers=opt.n_cpu)
# Loss plot
writer = SummaryWriter(comment=f'LR_{opt.lr}_BS_{opt.batchSize}')
###################################
train_iter = 0
###### Training ######
for epoch in range(opt.epoch, opt.n_epochs):
for i, batch in enumerate(dataloader):
# Set model input
real_A = Variable(input_A.copy_(batch['A']))
real_B = Variable(input_B.copy_(batch['B']))
###### Generators A2B and B2A ######
optimizer_G.zero_grad()
# GAN loss
fake_B = netG_A2B(real_A) # xray -> CT
pred_fake = netD_B(fake_B)
loss_GAN_A2B = criterion_GAN(pred_fake, target_real)
fake_A = netG_B2A(real_B) # CT -> xray
pred_fake = netD_A(fake_A)
loss_GAN_B2A = criterion_GAN(pred_fake, target_real)
# Cycle loss
recovered_A = netG_B2A(fake_B) # xray -> CT -> xray
loss_cycle_ABA = criterion_cycle(recovered_A, real_A)*10.0
recovered_B = netG_A2B(fake_A) # CT -> xray -> CT
loss_cycle_BAB = criterion_cycle(recovered_B, real_B)*30.0
# Total loss
if opt.fp16:
with torch.cuda.amp.autocast():
loss_G = loss_GAN_A2B + loss_GAN_B2A + loss_cycle_ABA + loss_cycle_BAB
scaler.scale(loss_G).backward()
scaler.step(optimizer_G)
else:
loss_G = loss_GAN_A2B + loss_GAN_B2A + loss_cycle_ABA + loss_cycle_BAB
loss_G.backward()
optimizer_G.step()
writer.add_scalar('G_Loss/'+'train', loss_G, train_iter)
writer.add_scalar('G_GANLoss/'+'train', loss_GAN_A2B + loss_GAN_B2A, train_iter)
writer.add_scalar('G_cycleLoss/'+'train', loss_cycle_ABA + loss_cycle_BAB, train_iter)
###################################
###### Discriminator A ######
optimizer_D_A.zero_grad()
# Real loss
pred_real = netD_A(real_A) # D(xray)
loss_D_real = criterion_GAN(pred_real, target_real)
# Fake loss
fake_A = fake_A_buffer.push_and_pop(fake_A)
pred_fake = netD_A(fake_A.detach())
loss_D_fake = criterion_GAN(pred_fake, target_fake)
# Total loss
if opt.fp16:
with torch.cuda.amp.autocast():
loss_D_A = (loss_D_real + loss_D_fake)*0.05
scaler.scale(loss_D_A).backward()
scaler.step(optimizer_D_A)
else:
loss_D_A = (loss_D_real + loss_D_fake)*0.05
loss_D_A.backward()
optimizer_D_A.step()
###################################
###### Discriminator B ######
optimizer_D_B.zero_grad()
# Real loss
pred_real = netD_B(real_B) #D(CT)
loss_D_real = criterion_GAN(pred_real, target_real)
# Fake loss
fake_B = fake_B_buffer.push_and_pop(fake_B)
pred_fake = netD_B(fake_B.detach())
loss_D_fake = criterion_GAN(pred_fake, target_fake)
# Total loss
if opt.fp16:
with torch.cuda.amp.autocast():
loss_D_B = (loss_D_real + loss_D_fake)*0.95
scaler.scale(loss_D_B).backward()
scaler.step(optimizer_D_B)
else:
loss_D_B = (loss_D_real + loss_D_fake)*0.95
loss_D_B.backward()
optimizer_D_B.step()
###################################
writer.add_scalar('D_Loss/'+'train', loss_D_A+loss_D_B, train_iter)
writer.add_scalar('2D_DLoss/'+'train', loss_D_A, train_iter)
writer.add_scalar('3D_DLoss/'+'train', loss_D_B, train_iter)
train_iter += 1
real_grid = torchvision.utils.make_grid((real_B[:,:,64]+1)/2)
writer.add_image('Real CTs', real_grid)
fake_grid = torchvision.utils.make_grid((fake_B[:,:,64]+1)/2)
writer.add_image('Generated CTs', fake_grid)
# Update learning rates
lr_scheduler_G.step()
lr_scheduler_D_A.step()
lr_scheduler_D_B.step()
if opt.fp16:
scaler.update()
if (opt.niter_fix_global != 0) and (epoch == opt.niter_fix_global):
optimizer_G = torch.optim.Adam(itertools.chain(netG_A2B.parameters(), netG_B2A.parameters()),
lr=opt.lr, betas=(0.5, 0.999))
print('------------ Now also finetuning global generator -----------')
# Save models checkpoints
path = './output/test_/'
Path(path).mkdir(parents=True, exist_ok=True)
torch.save(netG_A2B.state_dict(), path + 'netG_A2B.pth')
torch.save(netG_B2A.state_dict(), path + 'netG_B2A.pth')
torch.save(netD_A.state_dict(), path + 'netD_A.pth')
torch.save(netD_B.state_dict(), path + 'netD_B.pth')
writer.close()
###################################