-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathxprepro.py
45 lines (36 loc) · 1.57 KB
/
xprepro.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
import pandas as pd
import numpy as np
import os
import glob
import imageio
from skimage.transform import resize
from pathlib import Path
def normalize_to_plus_minus_one(img):
img_zero = img - np.amin(img)
img_one = img_zero / np.amax(img_zero)
img_one_one = img_one * 2.0 - 1.0
return img_one_one
chexpert_path = '/media/tianyu.han/mri-scratch/DeepLearning/Stanford_MIT_CHEST/CheXpert-v1.0'
train_csv_path = 'train.csv'
train_df = pd.read_csv(os.path.join(chexpert_path, train_csv_path))
lateral_df = train_df[train_df['Frontal/Lateral'] == 'Lateral']
counter = 0
for path in lateral_df['Path'].tolist():
img_name = ['*_lateral.jpg', '*_frontal.jpg']
basepath = '/media/tianyu.han/mri-scratch/DeepLearning/Stanford_MIT_CHEST/'
for name in img_name:
img_path = glob.glob(os.path.join(basepath+os.path.dirname(path), name))
if img_path:
img = imageio.imread(img_path[0])
if img.ndim != 2:
img = img[:,:,0]
image_resize = resize(img, (1024, 1024), anti_aliasing=True)
image_resize = normalize_to_plus_minus_one(image_resize)
image_resize = np.clip(np.rint((image_resize + 1.0) / 2.0 * 255.0), 0.0, 255.0).astype(np.uint8)
image_name = str(counter) + '.png'
dir_name = '../'+name[2:9]
Path(dir_name).mkdir(parents=True, exist_ok=True)
imageio.imwrite(os.path.join(dir_name, image_name), image_resize)
else:
print('no image found under ', os.path.join(basepath+os.path.dirname(path), name))
counter+=1