-
-
Notifications
You must be signed in to change notification settings - Fork 7
/
Copy pathrandom_plot_generator.py
113 lines (96 loc) · 4.16 KB
/
random_plot_generator.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
import pybamm
import logging
from plotting.config_generator import config_generator
from plotting.comparison_generator import ComparisonGenerator
from plotting.degradation_comparison_generator import DegradationComparisonGenerator
def random_plot_generator(return_dict, choice, reply_config=None, testing=False):
"""
Generates a random plot.
Parameters
----------
return_dict : dict
A shared dictionary in which all the return values are stored.
choice : str
Can be "model comparison", "parameter comparison" or
"degradation comparison".
reply_config : dict
Should be passed when the bot is replying to a requested
simulation tweet.
"""
logging.basicConfig(level=logging.INFO)
logger = logging.getLogger()
logger.setLevel(logging.INFO)
while True:
try:
if reply_config is None:
config = config_generator(choice)
else:
config = reply_config
if not testing:
pybamm.set_logging_level("NOTICE")
logger.info(config)
if choice == "degradation comparison":
degradation_comparison_generator = DegradationComparisonGenerator(
config["model"],
config["chemistry"],
config["param_values"],
config["degradation_parameter"],
config["cycle"],
config["number"],
)
# solving the configuration and creating the plot
degradation_comparison_generator.solve()
degradation_comparison_generator.generate_summary_variables()
return_dict.update(
{
"model": config["model"],
"chemistry": config["chemistry"],
"is_experiment": True,
"cycle": config["cycle"],
"number": config["number"],
"is_comparison": False,
"param_to_vary": config["degradation_parameter"],
"varied_values": config["varied_values"],
"degradation_mode": config["degradation_mode"],
"degradation_value": config["degradation_value"],
}
)
return
else:
# create an object of ComparisonGenerator with the random
# configuration
comparison_generator = ComparisonGenerator(
config["models_for_comp"],
config["chemistry"],
config["is_experiment"],
config["params"],
config["cycle"],
config["number"],
config["param_to_vary_info"],
config["varied_values_override"],
)
# create a GIF
if choice == "model comparison":
comparison_generator.model_comparison(testing=testing)
elif choice == "parameter comparison":
comparison_generator.parameter_comparison(testing=testing)
return_dict.update(
{
"model": config["models_for_comp"],
"chemistry": config["chemistry"],
"is_experiment": config["is_experiment"],
"cycle": config["cycle"],
"number": config["number"],
"is_comparison": True,
"param_to_vary": list(config["param_to_vary_info"].keys())[0]
if config["param_to_vary_info"] is not None
else None,
"varied_values": comparison_generator.comparison_dict[
"varied_values"
],
"params": comparison_generator.comparison_dict["params"],
}
)
return
except Exception as e: # pragma: no cover
print(e)