-
Notifications
You must be signed in to change notification settings - Fork 13
/
Copy pathwrite.py
48 lines (38 loc) · 1.26 KB
/
write.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
from utils import draw
from modules import HandwritingSynthesisNetwork
from dataset import HandwritingDataset, pad_and_mask_batch
from torch.utils.data import DataLoader
import pickle
import argparse
import torch
from pathlib import Path
def parse_args():
parser = argparse.ArgumentParser()
parser.add_argument("--load_path", required=True)
args = parser.parse_args()
return args
new_args = parse_args()
root = Path(new_args.load_path)
args = pickle.load(open(root / "args.pkl", "rb"))
test_dataset = HandwritingDataset(args.path, split='test')
sampling_loader = DataLoader(
test_dataset,
batch_size=1,
collate_fn=pad_and_mask_batch
)
model = HandwritingSynthesisNetwork(
test_dataset.vocab_size,
args.dec_hidden_size, args.dec_n_layers,
args.n_mixtures_attention, args.n_mixtures_output
).cuda()
model.load_state_dict(torch.load(root / 'model.pt'))
while True:
string = input("Enter input: ") + " "
chars = torch.from_numpy(
test_dataset.sent2idx(string)
).long()[None].cuda()
chars_mask = torch.ones_like(chars).float().cuda()
with torch.no_grad():
out = model.sample(chars, chars_mask, maxlen=2000)[0].cpu().numpy()
draw(out[0], save_file='./generated.jpg')
print("Generated sample...\n")