-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmetrics.js
executable file
·190 lines (165 loc) · 5.2 KB
/
metrics.js
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
import * as d3 from d3;
import * as druid from "@saehrimnir/druidjs";
function size_increase(X, Y) {
const x = d3.scaleLinear()
.domain(d3.extent(X, d => d[0]))
.range(d3.extent(Y, d => d[0]))
const y = d3.scaleLinear()
.domain(d3.extent(X, d => d[1]))
.range(d3.extent(Y, d => d[1]))
const remap = ([x0, y0]) => [x(x0), y(y0)];
const X_hull = d3.polygonHull(X.map(remap))
const Y_hull = d3.polygonHull(Y)
const X_size = d3.polygonArea(X_hull)
const Y_size = d3.polygonArea(Y_hull)
return {
value: X_size / Y_size,
measures: [X_hull, Y_hull],
}
}
function euclidean_distances(X, Y) {
const x = d3.scaleLinear()
.domain(d3.extent(X, d => d[0]))
.range(d3.extent(Y, d => d[0]))
const y = d3.scaleLinear()
.domain(d3.extent(X, d => d[1]))
.range(d3.extent(Y, d => d[1]))
const remap = ([x0, y0]) => [x(x0), y(y0)];
const distances = d3.zip(X.map(remap), Y).map(([a, b]) => druid.euclidean(a, b));
return {
value: druid.neumair_sum(distances) / X.length,
measures: distances,
}
}
function knn_preservation(X, Y, k=15, DX, DY) {
DX = !!DX ? distance_matrix(X) : DX;
DY = !!DY ? distance_matrix(Y) : DY;
let N = X.length;
let K = new Array(N).fill(0)
for (let i = 0; i < N; ++i) {
let knnX = DX[i]
.map((d,i) => [d, i])
.sort((a, b) => a[0] - b[0])
.slice(0, k)
.map(d => d[1]);
let knnY = DY[i]
.map((d,i) => [d, i])
.sort((a, b) => a[0] - b[0])
.slice(0, k)
.map(d => d[1]);
for (let j = 0; j < k; ++j) {
if (knnY.find(d => d == knnX[j])) K[i] += 1
}
K[i] /= k;
}
return {
value: druid.neumair_sum(K) / K.length,
measures: K
}
}
function alt_cc(X, Y) {
const N = X.length;
let DX = distance_matrix(X);
let DY = distance_matrix(Y);
const DXf = DX.flat();
const DYf = DY.flat();
const mx = d3.mean(DXf);
const my = d3.mean(DYf);
const ox = d3.deviation(DXf);
const oy = d3.deviation(DYf);
const l = druid.neumair_sum(DX.map(dx => druid.neumair_sum(dx.map(d => d - mx))))
const r = druid.neumair_sum(DY.map(dy => druid.neumair_sum(dy.map(d => d - my))))
const o = ox * oy
return (l * r / o)
}
function crosscorrelation_all(X, Y) {
const N = X.length;
const DX = distance_matrix(X);
const DY = distance_matrix(Y);
let DXf = DX.flat();
let DYf = DY.flat();
const DXmax = d3.max(DXf, Math.abs)
DXf = DXf.map(x => x / DXmax)
const DYmax = d3.max(DYf, Math.abs)
DYf = DYf.map(y => y / DYmax)
const ox = d3.deviation(DXf);
const oy = d3.deviation(DYf);
const mx = d3.mean(DXf);
const my = d3.mean(DYf);
console.log(ox, oy, mx, my)
let CC = new Array(N).fill(0)
//CC = CC.map(() => new Array(N).fill(0));
for (let i = 0; i < N; ++i) {
for (let j = 0; j < N; ++j) {
CC[i] += crosscorrelation(DXf[i * N + j], DYf[i * N + j], mx, my, ox, oy);
}
}
CC = CC.map(c => c/(ox*oy))
return {
value: druid.neumair_sum(CC),
measures: CC,
};
}
function crosscorrelation(dx, dy, mx, my, ox, oy) {
const l = dx - mx;
const r = dy - my;
const o = ox * oy;
console.log(dx, dy, mx, my, ox, oy, l, r, (l*r))
return (l*r)///o;
}
function distance_matrix(A) {
const N = A.length;
let M = new Array(N).fill(0)
M = M.map(() => new Array(N).fill(0));
for (let i = 0; i < N; ++i) {
let [x1, y1] = A[i];
for (let j = i + 1; j < N; ++j) {
let [x2, y2] = A[j];
let d = Math.sqrt(Math.pow(x1-x2, 2) + Math.pow(y1-y2, 2));
M[i][j] = d;
M[j][i] = d;
}
}
return M;
}
function distance_correlation(X, Y) {
const N = X.length;
const C = new druid.Matrix(N, N, "center");
const XX = C.dot(druid.Matrix.from(X)).to2dArray
const YY = C.dot(druid.Matrix.from(Y)).to2dArray
console.log(XX, YY)
const DX = distance_matrix(XX);
const DY = distance_matrix(YY);
const max_DX = d3.max(DX.flat(), d => Math.abs(d));
const max_DY = d3.max(DY.flat(), d => Math.abs(d));
for (let i = 0; i < N; ++i) {
for (let j = 0; j < N; ++j) {
DX[i][j] /= max_DX;
DY[i][j] /= max_DY
}
}
const idx = d3.range(0, N)
const a = d3.mean(DX.flat());
const b = d3.mean(DY.flat());
console.log(a, b)
let DC = new Array(N).fill(0)
DC = DC.map(() => new Array(N).fill(0));
for (let i = 0; i < N; ++i) {
let ai_ = d3.mean(DX[i])
let bi_ = d3.mean(DY[i])
let a_j = d3.mean(idx.map(j => DX[i][j]));
let b_j = d3.mean(idx.map(j => DY[i][j]));
for (let j = 0; j < N; ++j) {
const aij = +DX[i][j];
const bij = +DY[i][j];
const Aij = aij - ai_ - a_j + a;
const Bij = bij - bi_ - b_j + b;
DC[i][j] = Aij * Bij
//console.log(Aij, Bij)
}
}
return {
"value": Math.sqrt((druid.neumair_sum(DC.flat()) / N**2)),
"measures": DC.map(druid.neumair_sum).map(d => d / N),
}
}