-
Notifications
You must be signed in to change notification settings - Fork 7
/
Copy pathagnn_demo.py
114 lines (91 loc) · 3.9 KB
/
agnn_demo.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
# -*- coding: utf-8 -*-
"""
@author:XuMing(xuming624@qq.com)
@description:
@reference: https://github.com/tkipf/pygcn; https://github.com/dawnranger/pytorch-AGNN
"""
from __future__ import division
from __future__ import print_function
import argparse
import time
import numpy as np
import torch
import torch.nn.functional as F
import torch.optim as optim
from torch.autograd import Variable
from rater.models.graph.agnn import AGNN
from rater.models.graph.reader import load_data, accuracy
def train():
t_total = time.time()
for epoch in range(args.epochs):
t = time.time()
model.train()
optimizer.zero_grad()
output = model(features, adj)
loss_train = F.nll_loss(output[idx_train], labels[idx_train])
acc_train = accuracy(output[idx_train], labels[idx_train])
loss_train.backward()
optimizer.step()
if not args.fastmode:
# Evaluate validation set performance separately,
# deactivates dropout during validation run.
model.eval()
output = model(features, adj)
loss_val = F.nll_loss(output[idx_val], labels[idx_val])
acc_val = accuracy(output[idx_val], labels[idx_val])
print('Epoch: {:04d}'.format(epoch + 1),
'loss_train: {:.4f}'.format(loss_train.item()),
'acc_train: {:.4f}'.format(acc_train.item()),
'loss_val: {:.4f}'.format(loss_val.item()),
'acc_val: {:.4f}'.format(acc_val.item()),
'time: {:.4f}s'.format(time.time() - t))
print("Optimization Finished!")
print("Total time elapsed: {:.4f}s".format(time.time() - t_total))
def test():
model.eval()
output = model(features, adj)
loss_test = F.nll_loss(output[idx_test], labels[idx_test])
acc_test = accuracy(output[idx_test], labels[idx_test])
print("Test set results:",
"loss= {:.4f}".format(loss_test.item()),
"accuracy= {:.4f}".format(acc_test.item()))
if __name__ == "__main__":
# Training settings
parser = argparse.ArgumentParser()
parser.add_argument('--no-cuda', action='store_true', default=False, help='Disables CUDA training.')
parser.add_argument('--fastmode', action='store_true', default=True, help='Validate during training pass.')
parser.add_argument('--seed', type=int, default=42, help='Random seed.')
parser.add_argument('--epochs', type=int, default=500, help='Number of epochs to train.')
parser.add_argument('--lr', type=float, default=0.01, help='Initial learning rate.')
parser.add_argument('--weight_decay', type=float, default=5e-4, help='Weight decay (L2 loss on parameters).')
parser.add_argument('--hidden', type=int, default=16, help='Number of hidden units.')
parser.add_argument('--layers', type=int, default=3, help='Number of attention layers.')
parser.add_argument('--dropout_rate', type=float, default=0.5, help='Dropout rate (1 - keep probability).')
args = parser.parse_args()
args.cuda = not args.no_cuda and torch.cuda.is_available()
np.random.seed(args.seed)
torch.manual_seed(args.seed)
if args.cuda:
torch.cuda.manual_seed(args.seed)
# Load data
adj, features, labels, idx_train, idx_val, idx_test = load_data()
# Model and optimizer
model = AGNN(nfeat=features.shape[1],
nhid=args.hidden,
nclass=labels.max() + 1,
nlayers=args.layers,
dropout_rate=args.dropout_rate)
# print(model)
optimizer = optim.Adam(model.parameters(),
lr=args.lr, weight_decay=args.weight_decay)
if args.cuda:
model.cuda()
features = features.cuda()
adj = adj.cuda()
labels = labels.cuda()
idx_train = idx_train.cuda()
idx_val = idx_val.cuda()
idx_test = idx_test.cuda()
features, adj, labels = Variable(features), Variable(adj), Variable(labels)
train()
test()