Skip to content

Files

Latest commit

 

History

History
27 lines (26 loc) · 1.15 KB

README.md

File metadata and controls

27 lines (26 loc) · 1.15 KB

MNIST-CLASSIFICATION-TUTORIAL

Overview

  • Algorithms
    • Machine learning: LR, SVM, XGBoost, MLP
    • Deep learning: CNN, ResNet, VAE, Distilling Knowledge, Data-Free Learning
  • Framework
    • Sklearn
    • Tensorflow
    • Pytorch

Progress

Model Framework Main Params Test Accuracy Time Cost /s Comments
LR sklearn solver='liblinear', multi_class='ovr' 0.9202 57.87
SVM sklearn kernel='rbf', decision_function_shape='ovr' 0.9446 556.91
XGBoost sklearn max_depth=5, n_jobs=10 0.9651 141.38
MLP sklearn hidden_layer_sizes=(128, 32) 0.9768 44.80
MLP tensorflow batch_size=512, learning_rate=1e-3, hidden_layers=[128,32] 0.9795 39.05
CNN tensorflow batch_size=256, learning_rate=1e-5, num_epoch=100 0.9785 1062.03
ResNet
VAE
Distilling Knowledge
Data-Free Learning

Reference