-
Notifications
You must be signed in to change notification settings - Fork 121
/
Copy pathvs_dc_mmu.c
710 lines (567 loc) · 14.8 KB
/
vs_dc_mmu.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
// SPDX-License-Identifier: GPL-2.0
/*
* Copyright (C) 2020 VeriSilicon Holdings Co., Ltd.
*/
#include <linux/device.h>
#include <linux/errno.h>
#include <linux/kernel.h>
#include <linux/mm.h>
#include <linux/mman.h>
#include <linux/pagemap.h>
#include <linux/slab.h>
#include <linux/dma-mapping.h>
#include <linux/vmalloc.h>
#include <asm/io.h>
#include <asm/delay.h>
#include "vs_dc_mmu.h"
static bool mmu_construct;
int _allocate_memory(u32 bytes, void **memory)
{
void *mem = NULL;
if (bytes == 0 || memory == NULL) {
pr_err("%s has invalid arguments.\n", __func__);
return -EINVAL;
}
if (bytes > PAGE_SIZE)
mem = vmalloc(bytes);
else
mem = kmalloc(bytes, GFP_KERNEL);
if (!mem) {
pr_err("%s out of memory.\n", __func__);
return -ENOMEM;
}
memset((u8 *)mem, 0, bytes);
*memory = mem;
return 0;
}
static int _create_mutex(void **mutex)
{
int ret = 0;
if (mutex == NULL)
return -EINVAL;
ret = _allocate_memory(sizeof(struct mutex), mutex);
if (ret)
return ret;
mutex_init(*(struct mutex **)mutex);
return 0;
}
static int _acquire_mutex(void *mutex, u32 timeout)
{
if (mutex == NULL) {
pr_err("%s has invalid argument.\n", __func__);
return -EINVAL;
}
if (timeout == DC_INFINITE) {
mutex_lock(mutex);
return 0;
}
for (;;) {
/* Try to acquire the mutex. */
if (mutex_trylock(mutex)) {
/* Success. */
return 0;
}
if (timeout-- == 0)
break;
/* Wait for 1 millisecond. */
udelay(1000);
}
return -ETIMEDOUT;
}
static int _release_mutex(void *mutex)
{
if (mutex == NULL) {
pr_err("%s has invalid argument.\n", __func__);
return -EINVAL;
}
mutex_unlock(mutex);
return 0;
}
static u32 _mtlb_offset(u32 address)
{
return (address & MMU_MTLB_MASK) >> MMU_MTLB_SHIFT;
}
static u32 _stlb_offset(u32 address)
{
return (address & MMU_STLB_4K_MASK) >> MMU_STLB_4K_SHIFT;
}
static u32 _address_to_index(dc_mmu_pt mmu, u32 address)
{
return _mtlb_offset(address) * MMU_STLB_4K_ENTRY_NUM + _stlb_offset(address);
}
static u32 _set_page(u32 page_address, u32 page_address_ext, bool writable)
{
u32 entry = page_address
/* AddressExt */
| (page_address_ext << 4)
/* Ignore exception */
| (0 << 1)
/* Present */
| (1 << 0);
if (writable) {
/* writable */
entry |= (1 << 2);
}
return entry;
}
static void _write_page_entry(u32 *page_entry, u32 entry_value)
{
*page_entry = entry_value;
}
static u32 _read_page_entry(u32 *page_entry)
{
return *page_entry;
}
int _allocate_stlb(dc_mmu_stlb_pt *stlb)
{
dc_mmu_stlb_pt stlb_t = NULL;
void *mem = NULL;
mem = kzalloc(sizeof(dc_mmu_stlb), GFP_KERNEL);
if (!mem)
return -ENOMEM;
stlb_t = (dc_mmu_stlb_pt)mem;
stlb_t->size = MMU_STLB_4K_SIZE;
*stlb = stlb_t;
return 0;
}
int _allocate_all_stlb(struct device *dev, dc_mmu_stlb_pt *stlb)
{
dc_mmu_stlb_pt stlb_t = NULL;
void *mem = NULL;
void *cookie = NULL;
dma_addr_t dma_addr;
size_t size;
mem = kzalloc(sizeof(dc_mmu_stlb), GFP_KERNEL);
if (!mem)
return -ENOMEM;
stlb_t = (dc_mmu_stlb_pt)mem;
stlb_t->size = MMU_STLB_4K_SIZE * MMU_MTLB_ENTRY_NUM;
size = PAGE_ALIGN(stlb_t->size);
cookie = dma_alloc_wc(dev, size, &dma_addr, GFP_KERNEL);
if (!cookie) {
dev_err(dev, "Failed to alloc stlb buffer.\n");
return -ENOMEM;
}
stlb_t->logical = cookie;
stlb_t->physBase = (u64)dma_addr;
memset(stlb_t->logical, 0, size);
*stlb = stlb_t;
return 0;
}
int _setup_process_address_space(struct device *dev, dc_mmu_pt mmu)
{
u32 *map = NULL;
u32 free, i;
u32 dynamic_mapping_entries, address;
dc_mmu_stlb_pt all_stlb;
int ret = 0;
dynamic_mapping_entries = MMU_MTLB_ENTRY_NUM;
mmu->dynamic_mapping_start = 0;
mmu->page_table_size = dynamic_mapping_entries * MMU_STLB_4K_SIZE;
mmu->page_table_entries = mmu->page_table_size / sizeof(u32);
ret = _allocate_memory(mmu->page_table_size,
(void **)&mmu->map_logical);
if (ret) {
pr_err("Failed to alloc mmu map buffer.\n");
return ret;
}
map = mmu->map_logical;
/* Initialize free area*/
free = mmu->page_table_entries;
_write_page_entry(map, (free << 8) | DC_MMU_FREE);
_write_page_entry(map + 1, ~0U);
mmu->heap_list = 0;
mmu->free_nodes = false;
ret = _allocate_all_stlb(dev, &all_stlb);
if (ret)
return ret;
for (i = 0; i < dynamic_mapping_entries; i++) {
dc_mmu_stlb_pt stlb;
dc_mmu_stlb_pt *stlbs = (dc_mmu_stlb_pt *)mmu->stlbs;
ret = _allocate_stlb(&stlb);
if (ret)
return ret;
stlb->physBase = all_stlb->physBase + i * MMU_STLB_4K_SIZE;
stlb->logical = all_stlb->logical + i * MMU_STLB_4K_SIZE / sizeof(u32);
stlbs[i] = stlb;
}
address = (u32)all_stlb->physBase;
ret = _acquire_mutex(mmu->page_table_mutex, DC_INFINITE);
if (ret)
return ret;
for (i = mmu->dynamic_mapping_start;
i < mmu->dynamic_mapping_start + dynamic_mapping_entries;
i++) {
u32 mtlb_entry;
mtlb_entry = address
| MMU_MTLB_4K_PAGE
| MMU_MTLB_PRESENT;
address += MMU_STLB_4K_SIZE;
/* Insert Slave TLB address to Master TLB entry.*/
_write_page_entry(mmu->mtlb_logical + i, mtlb_entry);
}
_release_mutex(mmu->page_table_mutex);
return 0;
}
/* MMU Construct */
int dc_mmu_construct(struct device *dev, dc_mmu_pt *mmu)
{
dc_mmu_pt mmu_t = NULL;
void *mem = NULL;
void *cookie = NULL, *cookie_safe = NULL;
dma_addr_t dma_addr, dma_addr_safe;
u32 size = 0;
int ret = 0;
if (mmu_construct)
return 0;
mem = kzalloc(sizeof(dc_mmu), GFP_KERNEL);
if (!mem)
return -ENOMEM;
mmu_t = (dc_mmu_pt)mem;
mmu_t->mtlb_bytes = MMU_MTLB_SIZE;
size = PAGE_ALIGN(mmu_t->mtlb_bytes);
/* Allocate MTLB */
cookie = dma_alloc_wc(dev, size, &dma_addr, GFP_KERNEL);
if (!cookie) {
dev_err(dev, "Failed to alloc mtlb buffer.\n");
return -ENOMEM;
}
mmu_t->mtlb_logical = cookie;
mmu_t->mtlb_physical = (u64)dma_addr;
memset(mmu_t->mtlb_logical, 0, size);
size = MMU_MTLB_ENTRY_NUM * sizeof(dc_mmu_stlb_pt);
ret = _allocate_memory(size, &mmu_t->stlbs);
if (ret)
return ret;
ret = _create_mutex(&mmu_t->page_table_mutex);
if (ret)
return ret;
mmu_t->mode = MMU_MODE_1K;
ret = _setup_process_address_space(dev, mmu_t);
if (ret)
return ret;
/* Allocate safe page */
cookie_safe = dma_alloc_wc(dev, 4096, &dma_addr_safe, GFP_KERNEL);
if (!cookie_safe) {
dev_err(dev, "Failed to alloc safe page.\n");
return -ENOMEM;
}
mmu_t->safe_page_logical = cookie_safe;
mmu_t->safe_page_physical = (u64)dma_addr_safe;
memset(mmu_t->safe_page_logical, 0, size);
*mmu = mmu_t;
mmu_construct = true;
return 0;
}
int dc_mmu_get_page_entry(dc_mmu_pt mmu, u32 address, u32 **page_table)
{
dc_mmu_stlb_pt stlb;
dc_mmu_stlb_pt *stlbs = (dc_mmu_stlb_pt *)mmu->stlbs;
u32 mtlb_offset = _mtlb_offset(address);
u32 stlb_offset = _stlb_offset(address);
stlb = stlbs[mtlb_offset - mmu->dynamic_mapping_start];
if (stlb == NULL) {
pr_err("BUG: invalid stlb, mmu=%p stlbs=%p mtlb_offset=0x%x %s(%d)\n",
mmu, stlbs, mtlb_offset, __func__, __LINE__);
return -ENXIO;
}
*page_table = &stlb->logical[stlb_offset];
return 0;
}
int _link(dc_mmu_pt mmu, u32 index, u32 node)
{
if (index >= mmu->page_table_entries) {
mmu->heap_list = node;
} else {
u32 *map = mmu->map_logical;
switch (DC_ENTRY_TYPE(_read_page_entry(&map[index]))) {
case DC_MMU_SINGLE:
/* Previous is a single node, link to it*/
_write_page_entry(&map[index], (node << 8) | DC_MMU_SINGLE);
break;
case DC_MMU_FREE:
/* Link to FREE TYPE node */
_write_page_entry(&map[index + 1], node);
break;
default:
pr_err("MMU table corrupted at index %u!", index);
return -EINVAL;
}
}
return 0;
}
int _add_free(dc_mmu_pt mmu, u32 index, u32 node, u32 count)
{
u32 *map = mmu->map_logical;
if (count == 1) {
/* Initialize a single page node */
_write_page_entry(map + node, DC_SINGLE_PAGE_NODE_INITIALIZE | DC_MMU_SINGLE);
} else {
/* Initialize the FREE node*/
_write_page_entry(map + node, (count << 8) | DC_MMU_FREE);
_write_page_entry(map + node + 1, ~0U);
}
return _link(mmu, index, node);
}
/* Collect free nodes */
int _collect(dc_mmu_pt mmu)
{
u32 *map = mmu->map_logical;
u32 count = 0, start = 0, i = 0;
u32 previous = ~0U;
int ret = 0;
mmu->heap_list = ~0U;
mmu->free_nodes = false;
/* Walk the entire page table */
for (i = 0; i < mmu->page_table_entries; i++) {
switch (DC_ENTRY_TYPE(_read_page_entry(&map[i]))) {
case DC_MMU_SINGLE:
if (count++ == 0) {
/* Set new start node */
start = i;
}
break;
case DC_MMU_FREE:
if (count == 0) {
/* Set new start node */
start = i;
}
count += _read_page_entry(&map[i]) >> 8;
/* Advance the index of the page table */
i += (_read_page_entry(&map[i]) >> 8) - 1;
break;
case DC_MMU_USED:
/* Meet used node, start to collect */
if (count > 0) {
/* Add free node to list*/
ret = _add_free(mmu, previous, start, count);
if (ret)
return ret;
/* Reset previous unused node index */
previous = start;
count = 0;
}
break;
default:
pr_err("MMU page table corrupted at index %u!", i);
return -EINVAL;
}
}
/* If left node is an open node. */
if (count > 0) {
ret = _add_free(mmu, previous, start, count);
if (ret)
return ret;
}
return 0;
}
int _fill_page_table(u32 *page_table, u32 page_count, u32 entry_value)
{
u32 i;
for (i = 0; i < page_count; i++)
_write_page_entry(page_table + i, entry_value);
return 0;
}
int dc_mmu_allocate_pages(dc_mmu_pt mmu, u32 page_count, u32 *address)
{
bool got = false, acquired = false;
u32 *map;
u32 index = 0, vaddr, left;
u32 previous = ~0U;
u32 mtlb_offset, stlb_offset;
int ret = 0;
if (page_count == 0 || page_count > mmu->page_table_entries) {
pr_err("%s has invalid arguments.\n", __func__);
return -EINVAL;
}
_acquire_mutex(mmu->page_table_mutex, DC_INFINITE);
acquired = true;
for (map = mmu->map_logical; !got;) {
for (index = mmu->heap_list; !got && (index < mmu->page_table_entries);) {
switch (DC_ENTRY_TYPE(_read_page_entry(&map[index]))) {
case DC_MMU_SINGLE:
if (page_count == 1) {
got = true;
} else {
/* Move to next node */
previous = index;
index = _read_page_entry(&map[index]) >> 8;
}
break;
case DC_MMU_FREE:
if (page_count <= (_read_page_entry(&map[index]) >> 8)) {
got = true;
} else {
/* Move to next node */
previous = index;
index = _read_page_entry(&map[index + 1]);
}
break;
default:
/* Only link SINGLE and FREE node */
pr_err("MMU table corrupted at index %u!", index);
ret = -EINVAL;
goto OnError;
}
}
/* If out of index */
if (index >= mmu->page_table_entries) {
if (mmu->free_nodes) {
/* Collect the free node */
ret = _collect(mmu);
if (ret)
goto OnError;
} else {
ret = -ENODATA;
goto OnError;
}
}
}
switch (DC_ENTRY_TYPE(_read_page_entry(&map[index]))) {
case DC_MMU_SINGLE:
/* Unlink single node from node list */
ret = _link(mmu, previous, _read_page_entry(&map[index]) >> 8);
if (ret)
goto OnError;
break;
case DC_MMU_FREE:
left = (_read_page_entry(&map[index]) >> 8) - page_count;
switch (left) {
case 0:
/* Unlink the entire FREE type node */
ret = _link(mmu, previous, _read_page_entry(&map[index + 1]));
if (ret)
goto OnError;
break;
case 1:
/* Keep the map[index] as a single node,
* mark the left as used
*/
_write_page_entry(&map[index],
(_read_page_entry(&map[index + 1]) << 8) |
DC_MMU_SINGLE);
index++;
break;
default:
/* FREE type node left */
_write_page_entry(&map[index],
(left << 8) | DC_MMU_FREE);
index += left;
break;
}
break;
default:
/* Only link SINGLE and FREE node */
pr_err("MMU table corrupted at index %u!", index);
ret = -EINVAL;
goto OnError;
}
/* Mark node as used */
ret = _fill_page_table(&map[index], page_count, DC_MMU_USED);
if (ret)
goto OnError;
_release_mutex(mmu->page_table_mutex);
mtlb_offset = index / MMU_STLB_4K_ENTRY_NUM + mmu->dynamic_mapping_start;
stlb_offset = index % MMU_STLB_4K_ENTRY_NUM;
vaddr = (mtlb_offset << MMU_MTLB_SHIFT) | (stlb_offset << MMU_STLB_4K_SHIFT);
if (address != NULL)
*address = vaddr;
return 0;
OnError:
if (acquired)
_release_mutex(mmu->page_table_mutex);
return ret;
}
int dc_mmu_free_pages(dc_mmu_pt mmu, u32 address, u32 page_count)
{
u32 *node;
if (page_count == 0)
return -EINVAL;
node = mmu->map_logical + _address_to_index(mmu, address);
_acquire_mutex(mmu->page_table_mutex, DC_INFINITE);
if (page_count == 1) {
/* Mark the Single page node free */
_write_page_entry(node, DC_SINGLE_PAGE_NODE_INITIALIZE | DC_MMU_SINGLE);
} else {
/* Mark the FREE type node free */
_write_page_entry(node, (page_count << 8) | DC_MMU_FREE);
_write_page_entry(node + 1, ~0U);
}
mmu->free_nodes = true;
_release_mutex(mmu->page_table_mutex);
return 0;
}
int dc_mmu_set_page(dc_mmu_pt mmu, u64 page_address, u32 *page_entry)
{
u32 address_ext;
u32 address;
if (page_entry == NULL || (page_address & 0xFFF))
return -EINVAL;
/* [31:0]. */
address = (u32)(page_address & 0xFFFFFFFF);
/* [39:32]. */
address_ext = (u32)((page_address >> 32) & 0xFF);
_write_page_entry(page_entry, _set_page(address, address_ext, true));
return 0;
}
int dc_mmu_map_memory(dc_mmu_pt mmu, u64 physical, u32 page_count,
u32 *address, bool continuous, bool security)
{
u32 virutal_address, i = 0;
u32 mtlb_num, mtlb_entry, mtlb_offset;
bool allocated = false;
int ret = 0;
ret = dc_mmu_allocate_pages(mmu, page_count, &virutal_address);
if (ret)
goto OnError;
*address = virutal_address;
allocated = true;
/*Fill mtlb security bit*/
mtlb_num = _mtlb_offset(virutal_address + page_count * MMU_PAGE_4K_SIZE - 1) -
_mtlb_offset(virutal_address) + 1;
mtlb_offset = _mtlb_offset(virutal_address);
mtlb_entry = mmu->mtlb_logical[mtlb_offset];
for (i = 0; i < mtlb_num ; i++) {
mtlb_entry = mmu->mtlb_logical[mtlb_offset + i];
if (security) {
mtlb_entry = mtlb_entry
| MMU_MTLB_SECURITY
| MMU_MTLB_EXCEPTION;
_write_page_entry(&mmu->mtlb_logical[mtlb_offset + i], mtlb_entry);
} else {
mtlb_entry = mtlb_entry & (~MMU_MTLB_SECURITY);
_write_page_entry(&mmu->mtlb_logical[mtlb_offset + i], mtlb_entry);
}
}
/* Fill in page table */
for (i = 0; i < page_count; i++) {
u64 page_phy;
u32 *page_entry;
struct page **pages;
if (continuous == true) {
page_phy = physical + i * MMU_PAGE_4K_SIZE;
} else {
pages = (struct page **)physical;
page_phy = page_to_phys(pages[i]);
}
ret = dc_mmu_get_page_entry(mmu, virutal_address, &page_entry);
if (ret)
goto OnError;
/* Write the page address to the page entry */
ret = dc_mmu_set_page(mmu, page_phy, page_entry);
if (ret)
goto OnError;
/* Get next page */
virutal_address += MMU_PAGE_4K_SIZE;
}
return 0;
OnError:
if (allocated)
dc_mmu_free_pages(mmu, virutal_address, page_count);
pr_info("%s fail!\n", __func__);
return ret;
}
int dc_mmu_unmap_memory(dc_mmu_pt mmu, u32 gpu_address, u32 page_count)
{
return dc_mmu_free_pages(mmu, gpu_address, page_count);
}