forked from BUPT-GAMMA/OpenHGNN
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathExpressGNN.py
680 lines (548 loc) · 28.1 KB
/
ExpressGNN.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
import torch
import torch.nn as nn
import torch.nn.functional as F
import networkx as nx
from itertools import product
from . import BaseModel, register_model
@register_model('ExpressGNN')
class ExpressGNN(BaseModel):
@classmethod
def build_model_from_args(cls, args, hg):
return cls(args=args,
latent_dim=args.embedding_size - args.gcn_free_size,
free_dim=args.gcn_free_size,
device=args.device,
load_method=args.load_method,
rule_list=args.rule_list,
rule_weights_learning=args.rule_weights_learning,
graph=hg,
PRED_DICT=args.PRED_DICT,
slice_dim=args.slice_dim,
transductive=(args.trans == 1))
def __init__(self, args, graph, latent_dim, free_dim, device, load_method, rule_list, rule_weights_learning,
PRED_DICT,
num_hops=5, num_layers=2, slice_dim=5, transductive=True):
"""
Parameters
----------
graph: knowledge graph
latent_dim: embedding_size - gcn_free_size
free_dim: gcn_free_size
device: device
load_method: Factorized Posterior's load method, use args to get
rule_list: MLN's rules, should come from dataset
rule_weights_learning: MLN's args, should come from args
num_hops: number of hops of GCN
num_layers: number of layers of GCN
slice_dim: Used by Factorized Posterior
transductive: Used by GCN
"""
# GCN's setting
super(ExpressGNN, self).__init__()
self.graph = graph
self.latent_dim = latent_dim
self.free_dim = free_dim
self.num_hops = num_hops
self.num_layers = num_layers
self.PRED_DICT = PRED_DICT
self.args = args
self.num_ents = graph.num_ents
self.num_rels = graph.num_rels
self.num_nodes = graph.num_nodes
self.num_edges = graph.num_edges
self.num_edge_types = len(graph.edge_type2idx)
# Factorized Posterior's loss function
self.xent_loss = F.binary_cross_entropy_with_logits
# Factorized Posterior's
self.load_method = load_method
self.num_rels = graph.num_rels
self.ent2idx = graph.ent2idx
self.rel2idx = graph.rel2idx
self.idx2rel = graph.idx2rel
# Trainable Embedding
self.num_ents = self.graph.num_ents
self.ent_embeds = nn.Embedding(self.num_ents, self.args.embedding_size)
self.ents = torch.arange(self.num_ents).to(args.device)
self.edge2node_in, self.edge2node_out, self.node_degree, \
self.edge_type_masks, self.edge_direction_masks = self.gen_edge2node_mapping()
self.node_feat, self.const_nodes = self.prepare_node_feature(graph, transductive=transductive)
if not transductive:
self.node_feat_dim = 1 + self.num_rels
else:
self.node_feat_dim = self.num_ents + self.num_rels
self.init_node_linear = nn.Linear(self.node_feat_dim, latent_dim, bias=False)
for param in self.init_node_linear.parameters():
param.requires_grad = False
self.node_feat = self.node_feat.to(device)
self.const_nodes = self.const_nodes.to(device)
self.edge2node_in = self.edge2node_in.to(device)
self.edge2node_out = self.edge2node_out.to(device)
self.edge_type_masks = [mask.to(device) for mask in self.edge_type_masks]
self.edge_direction_masks = [mask.to(device) for mask in self.edge_direction_masks]
self.MLPs = nn.ModuleList()
for _ in range(self.num_hops):
self.MLPs.append(MLP(input_size=self.latent_dim, num_layers=self.num_layers,
hidden_size=self.latent_dim, output_size=self.latent_dim))
self.edge_type_W = nn.ModuleList()
for _ in range(self.num_edge_types):
ml_edge_type = nn.ModuleList()
for _ in range(self.num_hops):
ml_hop = nn.ModuleList()
for _ in range(2): # 2 directions of edges
ml_hop.append(nn.Linear(latent_dim, latent_dim, bias=False))
ml_edge_type.append(ml_hop)
self.edge_type_W.append(ml_edge_type)
self.const_nodes_free_params = nn.Parameter(nn.init.kaiming_uniform_(torch.zeros(self.num_ents, free_dim)))
# load Factorized Posterior
if load_method == 1:
self.params_u_R = nn.ModuleList()
self.params_W_R = nn.ModuleList()
self.params_V_R = nn.ModuleList()
for idx in range(self.num_rels):
rel = self.idx2rel[idx]
num_args = self.PRED_DICT[rel].num_args
self.params_W_R.append(
nn.Bilinear(num_args * args.embedding_size, num_args * args.embedding_size, slice_dim, bias=False))
self.params_V_R.append(nn.Linear(num_args * args.embedding_size, slice_dim, bias=True))
self.params_u_R.append(nn.Linear(slice_dim, 1, bias=False))
elif load_method == 0:
self.params_u_R = nn.ParameterList()
self.params_W_R = nn.ModuleList()
self.params_V_R = nn.ModuleList()
self.params_b_R = nn.ParameterList()
for idx in range(self.num_rels):
rel = self.idx2rel[idx]
num_args = self.PRED_DICT[rel].num_args
self.params_u_R.append(nn.Parameter(nn.init.kaiming_uniform_(torch.zeros(slice_dim, 1)).view(-1)))
self.params_W_R.append(
nn.Bilinear(num_args * args.embedding_size, num_args * args.embedding_size, slice_dim, bias=False))
self.params_V_R.append(nn.Linear(num_args * args.embedding_size, slice_dim, bias=False))
self.params_b_R.append(nn.Parameter(nn.init.kaiming_uniform_(torch.zeros(slice_dim, 1)).view(-1)))
# --- MLN ---
self.rule_weights_lin = nn.Linear(len(rule_list), 1, bias=False)
self.num_rules = len(rule_list)
self.soft_logic = False
self.alpha_table = nn.Parameter(torch.tensor([10.0 for _ in range(len(self.PRED_DICT))], requires_grad=True))
self.predname2ind = dict(e for e in zip(self.PRED_DICT.keys(), range(len(self.PRED_DICT))))
if rule_weights_learning == 0:
self.rule_weights_lin.weight.data = torch.tensor([[rule.weight for rule in rule_list]],
dtype=torch.float)
print('rule weights fixed as pre-defined values\n')
else:
self.rule_weights_lin.weight = nn.Parameter(
torch.tensor([[rule.weight for rule in rule_list]], dtype=torch.float))
print('rule weights set to pre-defined values, learning weights\n')
def gcn_forward(self, batch_data):
if self.args.use_gcn == 0:
node_embeds = self.ent_embeds(self.ents)
return node_embeds
else:
node_embeds = self.init_node_linear(self.node_feat)
hop = 0
hidden = node_embeds
while hop < self.num_hops:
node_aggregate = torch.zeros_like(hidden)
for edge_type in set(self.graph.edge_types):
for direction in range(2):
W = self.edge_type_W[edge_type][hop][direction]
W_nodes = W(hidden)
nodes_attached_on_edges_out = torch.gather(W_nodes, 0, self.edge2node_out)
nodes_attached_on_edges_out *= self.edge_type_masks[edge_type].view(-1, 1)
nodes_attached_on_edges_out *= self.edge_direction_masks[direction].view(-1, 1)
node_aggregate.scatter_add_(0, self.edge2node_in, nodes_attached_on_edges_out)
hidden = self.MLPs[hop](hidden + node_aggregate)
hop += 1
read_out_const_nodes_embed = torch.cat((hidden[self.const_nodes], self.const_nodes_free_params), dim=1)
return read_out_const_nodes_embed
def posterior_forward(self, latent_vars, node_embeds, batch_mode=False, fast_mode=False, fast_inference_mode=False):
"""
compute posterior probabilities of specified latent variables
:param latent_vars:
list of latent variables (i.e. unobserved facts)
:param node_embeds:
node embeddings
:return:
n-dim vector, probability of corresponding latent variable being True
Parameters
----------
fast_inference_mode
fast_mode
batch_mode
"""
# this mode is only for fast inference on Freebase data
if fast_inference_mode:
assert self.load_method == 1
samples = latent_vars
scores = []
for ind in range(len(samples)):
pred_name, pred_sample = samples[ind]
rel_idx = self.rel2idx[pred_name]
sample_mat = torch.tensor(pred_sample, dtype=torch.long).to(self.args.device) # (bsize, 2)
sample_query = torch.cat([node_embeds[sample_mat[:, 0]], node_embeds[sample_mat[:, 1]]], dim=1)
sample_score = self.params_u_R[rel_idx](
torch.tanh(self.params_W_R[rel_idx](sample_query, sample_query) +
self.params_V_R[rel_idx](sample_query))).view(-1) # (bsize)
scores.append(torch.sigmoid(sample_score))
return scores
# this mode is only for fast training on Freebase data
elif fast_mode:
assert self.load_method == 1
samples, neg_mask, latent_mask, obs_var, neg_var = latent_vars
scores = []
obs_probs = []
neg_probs = []
a = []
for pred_mask in neg_mask:
a.append(pred_mask[1])
pos_mask_mat = torch.tensor(a)
pos_mask_mat = pos_mask_mat.to(self.args.device)
neg_mask_mat = (pos_mask_mat == 0).type(torch.float)
latent_mask_mat = torch.tensor([pred_mask[1] for pred_mask in latent_mask], dtype=torch.float).to(
self.args.device)
obs_mask_mat = (latent_mask_mat == 0).type(torch.float)
for ind in range(len(samples)):
pred_name, pred_sample = samples[ind]
_, obs_sample = obs_var[ind]
_, neg_sample = neg_var[ind]
rel_idx = self.rel2idx[pred_name]
sample_mat = torch.tensor(pred_sample, dtype=torch.long).to(self.args.device)
obs_mat = torch.tensor(obs_sample, dtype=torch.long).to(self.args.device)
neg_mat = torch.tensor(neg_sample, dtype=torch.long).to(self.args.device)
sample_mat = torch.cat([sample_mat, obs_mat, neg_mat], dim=0)
sample_query = torch.cat([node_embeds[sample_mat[:, 0]], node_embeds[sample_mat[:, 1]]], dim=1)
sample_score = self.params_u_R[rel_idx](
torch.tanh(self.params_W_R[rel_idx](sample_query, sample_query) +
self.params_V_R[rel_idx](sample_query))).view(-1)
var_prob = sample_score[len(pred_sample):]
obs_prob = var_prob[:len(obs_sample)]
neg_prob = var_prob[len(obs_sample):]
sample_score = sample_score[:len(pred_sample)]
scores.append(sample_score)
obs_probs.append(obs_prob)
neg_probs.append(neg_prob)
score_mat = torch.stack(scores, dim=0)
score_mat = torch.sigmoid(score_mat)
pos_score = (1 - score_mat) * pos_mask_mat
neg_score = score_mat * neg_mask_mat
potential = 1 - ((pos_score + neg_score) * latent_mask_mat + obs_mask_mat).prod(dim=0)
obs_mat = torch.cat(obs_probs, dim=0)
if obs_mat.size(0) == 0:
obs_loss = 0.0
else:
obs_loss = self.xent_loss(obs_mat, torch.ones_like(obs_mat), reduction='sum')
neg_mat = torch.cat(neg_probs, dim=0)
if neg_mat.size(0) != 0:
obs_loss += self.xent_loss(obs_mat, torch.zeros_like(neg_mat), reduction='sum')
obs_loss /= (obs_mat.size(0) + neg_mat.size(0) + 1e-6)
return potential, (score_mat * latent_mask_mat).view(-1), obs_loss
elif batch_mode:
assert self.load_method == 1
pred_name, x_mat, invx_mat, sample_mat = latent_vars
rel_idx = self.rel2idx[pred_name]
x_mat = torch.tensor(x_mat, dtype=torch.long).to(self.args.device)
invx_mat = torch.tensor(invx_mat, dtype=torch.long).to(self.args.device)
sample_mat = torch.tensor(sample_mat, dtype=torch.long).to(self.args.device)
tail_query = torch.cat([node_embeds[x_mat[:, 0]], node_embeds[x_mat[:, 1]]], dim=1)
head_query = torch.cat([node_embeds[invx_mat[:, 0]], node_embeds[invx_mat[:, 1]]], dim=1)
true_query = torch.cat([node_embeds[sample_mat[:, 0]], node_embeds[sample_mat[:, 1]]], dim=1)
tail_score = self.params_u_R[rel_idx](torch.tanh(self.params_W_R[rel_idx](tail_query, tail_query) +
self.params_V_R[rel_idx](tail_query))).view(-1)
head_score = self.params_u_R[rel_idx](torch.tanh(self.params_W_R[rel_idx](head_query, head_query) +
self.params_V_R[rel_idx](head_query))).view(-1)
true_score = self.params_u_R[rel_idx](torch.tanh(self.params_W_R[rel_idx](true_query, true_query) +
self.params_V_R[rel_idx](true_query))).view(-1)
probas_tail = torch.sigmoid(tail_score)
probas_head = torch.sigmoid(head_score)
probas_true = torch.sigmoid(true_score)
return probas_tail, probas_head, probas_true
else:
assert self.load_method == 0
probas = torch.zeros(len(latent_vars)).to(self.args.device)
for i in range(len(latent_vars)):
rel, args = latent_vars[i]
args_embed = torch.cat([node_embeds[self.ent2idx[arg]] for arg in args], 0)
rel_idx = self.rel2idx[rel]
score = self.params_u_R[rel_idx].dot(
torch.tanh(self.params_W_R[rel_idx](args_embed, args_embed) +
self.params_V_R[rel_idx](args_embed) +
self.params_b_R[rel_idx])
)
proba = torch.sigmoid(score)
probas[i] = proba
return probas
def mln_forward(self, neg_mask_ls_ls, latent_var_inds_ls_ls, observed_rule_cnts, posterior_prob, flat_list,
observed_vars_ls_ls):
"""
compute the MLN potential given the posterior probability of latent variables
:param neg_mask_ls_ls:
:return:
Parameters
----------
flat_list
posterior_prob
observed_vars_ls_ls
latent_var_inds_ls_ls
observed_rule_cnts
"""
scores = torch.zeros(self.num_rules, dtype=torch.float, device=self.args.device)
pred_ind_flat_list = []
if self.soft_logic:
pred_name_ls = [e[0] for e in flat_list]
pred_ind_flat_list = [self.predname2ind[pred_name] for pred_name in pred_name_ls]
for i in range(len(neg_mask_ls_ls)):
neg_mask_ls = neg_mask_ls_ls[i]
latent_var_inds_ls = latent_var_inds_ls_ls[i]
observed_vars_ls = observed_vars_ls_ls[i]
# sum of scores from gnd rules with latent vars
for j in range(len(neg_mask_ls)):
latent_neg_mask, observed_neg_mask = neg_mask_ls[j]
latent_var_inds = latent_var_inds_ls[j]
observed_vars = observed_vars_ls[j]
z_probs = posterior_prob[latent_var_inds].unsqueeze(0)
z_probs = torch.cat([1 - z_probs, z_probs], dim=0)
cartesian_prod = z_probs[:, 0]
for j in range(1, z_probs.shape[1]):
cartesian_prod = torch.ger(cartesian_prod, z_probs[:, j])
cartesian_prod = cartesian_prod.view(-1)
view_ls = [2 for _ in range(len(latent_neg_mask))]
cartesian_prod = cartesian_prod.view(*[view_ls])
if self.soft_logic:
# observed alpha
obs_vals = [e[0] for e in observed_vars]
pred_names = [e[1] for e in observed_vars]
pred_inds = [self.predname2ind[pn] for pn in pred_names]
alpha = self.alpha_table[pred_inds] # alphas in this formula
act_alpha = torch.sigmoid(alpha)
obs_neg_flag = [(1 if observed_vars[i] != observed_neg_mask[i] else 0)
for i in range(len(observed_vars))]
tn_obs_neg_flag = torch.tensor(obs_neg_flag, dtype=torch.float)
val = torch.abs(1 - torch.tensor(obs_vals, dtype=torch.float) - act_alpha)
obs_score = torch.abs(tn_obs_neg_flag - val)
# latent alpha
inds = product(*[[0, 1] for _ in range(len(latent_neg_mask))])
pred_inds = [pred_ind_flat_list[i] for i in latent_var_inds]
alpha = self.alpha_table[pred_inds] # alphas in this formula
act_alpha = torch.sigmoid(alpha)
tn_latent_neg_mask = torch.tensor(latent_neg_mask, dtype=torch.float)
for ind in inds:
val = torch.abs(1 - torch.tensor(ind, dtype=torch.float) - act_alpha)
val = torch.abs(tn_latent_neg_mask - val)
cartesian_prod[tuple(ind)] *= torch.max(torch.cat([val, obs_score], dim=0))
else:
if sum(observed_neg_mask) == 0:
cartesian_prod[tuple(latent_neg_mask)] = 0.0
scores[i] += cartesian_prod.sum()
# sum of scores from gnd rule with only observed vars
scores[i] += observed_rule_cnts[i]
return self.rule_weights_lin(scores)
def gen_edge2node_mapping(self):
"""
A GCN's function
Returns
-------
"""
ei = 0 # edge index with direction
edge_idx = 0 # edge index without direction
edge2node_in = torch.zeros(self.num_edges * 2, dtype=torch.long)
edge2node_out = torch.zeros(self.num_edges * 2, dtype=torch.long)
node_degree = torch.zeros(self.num_nodes)
edge_type_masks = []
for _ in range(self.num_edge_types):
edge_type_masks.append(torch.zeros(self.num_edges * 2))
edge_direction_masks = []
for _ in range(2): # 2 directions of edges
edge_direction_masks.append(torch.zeros(self.num_edges * 2))
for ni, nj in torch.as_tensor(self.graph.edge_pairs):
edge_type = self.graph.edge_types[edge_idx]
edge_idx += 1
edge2node_in[ei] = nj
edge2node_out[ei] = ni
node_degree[ni] += 1
edge_type_masks[edge_type][ei] = 1
edge_direction_masks[0][ei] = 1
ei += 1
edge2node_in[ei] = ni
edge2node_out[ei] = nj
node_degree[nj] += 1
edge_type_masks[edge_type][ei] = 1
edge_direction_masks[1][ei] = 1
ei += 1
edge2node_in = edge2node_in.view(-1, 1).expand(-1, self.latent_dim)
edge2node_out = edge2node_out.view(-1, 1).expand(-1, self.latent_dim)
node_degree = node_degree.view(-1, 1)
return edge2node_in, edge2node_out, node_degree, edge_type_masks, edge_direction_masks
def weight_update(self, neg_mask_ls_ls, latent_var_inds_ls_ls, observed_rule_cnts, posterior_prob, flat_list,
observed_vars_ls_ls):
"""
A MLN's Function
Parameters
----------
neg_mask_ls_ls
latent_var_inds_ls_ls
observed_rule_cnts
posterior_prob
flat_list
observed_vars_ls_ls
Returns
-------
"""
closed_wolrd_potentials = torch.zeros(self.num_rules, dtype=torch.float)
pred_ind_flat_list = []
if self.soft_logic:
pred_name_ls = [e[0] for e in flat_list]
pred_ind_flat_list = [self.predname2ind[pred_name] for pred_name in pred_name_ls]
for i in range(len(neg_mask_ls_ls)):
neg_mask_ls = neg_mask_ls_ls[i]
latent_var_inds_ls = latent_var_inds_ls_ls[i]
observed_vars_ls = observed_vars_ls_ls[i]
# sum of scores from gnd rules with latent vars
for j in range(len(neg_mask_ls)):
latent_neg_mask, observed_neg_mask = neg_mask_ls[j]
latent_var_inds = latent_var_inds_ls[j]
observed_vars = observed_vars_ls[j]
has_pos_atom = False
for val in observed_neg_mask + latent_neg_mask:
if val == 1:
has_pos_atom = True
break
if has_pos_atom:
closed_wolrd_potentials[i] += 1
z_probs = posterior_prob[latent_var_inds].unsqueeze(0)
z_probs = torch.cat([1 - z_probs, z_probs], dim=0)
cartesian_prod = z_probs[:, 0]
for j in range(1, z_probs.shape[1]):
cartesian_prod = torch.ger(cartesian_prod, z_probs[:, j])
cartesian_prod = cartesian_prod.view(-1)
view_ls = [2 for _ in range(len(latent_neg_mask))]
cartesian_prod = cartesian_prod.view(*[view_ls])
if self.soft_logic:
# observed alpha
obs_vals = [e[0] for e in observed_vars]
pred_names = [e[1] for e in observed_vars]
pred_inds = [self.predname2ind[pn] for pn in pred_names]
alpha = self.alpha_table[pred_inds] # alphas in this formula
act_alpha = torch.sigmoid(alpha)
obs_neg_flag = [(1 if observed_vars[i] != observed_neg_mask[i] else 0)
for i in range(len(observed_vars))]
tn_obs_neg_flag = torch.tensor(obs_neg_flag, dtype=torch.float)
val = torch.abs(1 - torch.tensor(obs_vals, dtype=torch.float) - act_alpha)
obs_score = torch.abs(tn_obs_neg_flag - val)
# latent alpha
inds = product(*[[0, 1] for _ in range(len(latent_neg_mask))])
pred_inds = [pred_ind_flat_list[i] for i in latent_var_inds]
alpha = self.alpha_table[pred_inds] # alphas in this formula
act_alpha = torch.sigmoid(alpha)
tn_latent_neg_mask = torch.tensor(latent_neg_mask, dtype=torch.float)
for ind in inds:
val = torch.abs(1 - torch.tensor(ind, dtype=torch.float) - act_alpha)
val = torch.abs(tn_latent_neg_mask - val)
cartesian_prod[tuple(ind)] *= torch.max(torch.cat([val, obs_score], dim=0))
else:
if sum(observed_neg_mask) == 0:
cartesian_prod[tuple(latent_neg_mask)] = 0.0
weight_grad = closed_wolrd_potentials
return weight_grad
def gen_index(self, facts, predicates, dataset):
rel2idx = dict()
idx_rel = 0
for rel in sorted(predicates.keys()):
if rel not in rel2idx:
rel2idx[rel] = idx_rel
idx_rel += 1
idx2rel = dict(zip(rel2idx.values(), rel2idx.keys()))
ent2idx = dict()
idx_ent = 0
for type_name in sorted(dataset.const_sort_dict.keys()):
for const in dataset.const_sort_dict[type_name]:
ent2idx[const] = idx_ent
idx_ent += 1
idx2ent = dict(zip(ent2idx.values(), ent2idx.keys()))
node2idx = ent2idx.copy()
idx_node = len(node2idx)
for rel in sorted(facts.keys()):
for fact in sorted(list(facts[rel])):
val, args = fact
if (rel, args) not in node2idx:
node2idx[(rel, args)] = idx_node
idx_node += 1
idx2node = dict(zip(node2idx.values(), node2idx.keys()))
return ent2idx, idx2ent, rel2idx, idx2rel, node2idx, idx2node
def gen_edge_type(self):
edge_type2idx = dict()
num_args_set = set()
for rel in self.PRED_DICT:
num_args = self.PRED_DICT[rel].num_args
num_args_set.add(num_args)
idx = 0
for num_args in sorted(list(num_args_set)):
for pos_code in product(['0', '1'], repeat=num_args):
if '1' in pos_code:
edge_type2idx[(0, ''.join(pos_code))] = idx
idx += 1
edge_type2idx[(1, ''.join(pos_code))] = idx
idx += 1
return edge_type2idx
def gen_graph(self, facts, predicates, dataset):
"""
generate directed knowledge graph, where each edge is from subject to object
:param facts:
dictionary of facts
:param predicates:
dictionary of predicates
:param dataset:
dataset object
:return:
graph object, entity to index, index to entity, relation to index, index to relation
"""
# build bipartite graph (constant nodes and hyper predicate nodes)
g = nx.Graph()
ent2idx, idx2ent, rel2idx, idx2rel, node2idx, idx2node = self.gen_index(facts, predicates, dataset)
edge_type2idx = self.gen_edge_type()
for node_idx in idx2node:
g.add_node(node_idx)
for rel in facts.keys():
for fact in facts[rel]:
val, args = fact
fact_node_idx = node2idx[(rel, args)]
for arg in args:
pos_code = ''.join(['%d' % (arg == v) for v in args])
g.add_edge(fact_node_idx, node2idx[arg],
edge_type=edge_type2idx[(val, pos_code)])
return g, edge_type2idx, ent2idx, idx2ent, rel2idx, idx2rel, node2idx, idx2node
def prepare_node_feature(self, graph, transductive=True):
if transductive:
node_feat = torch.zeros(graph.num_nodes, # for transductive GCN
graph.num_ents + graph.num_rels)
const_nodes = []
for i in graph.idx2node:
if isinstance(graph.idx2node[i], str): # const (entity) node
const_nodes.append(i)
node_feat[i][i] = 1
elif isinstance(graph.idx2node[i], tuple): # fact node
rel, args = graph.idx2node[i]
node_feat[i][graph.num_ents + graph.rel2idx[rel]] = 1
else:
node_feat = torch.zeros(graph.num_nodes, 1 + graph.num_rels) # for inductive GCN
const_nodes = []
for i in graph.idx2node:
if isinstance(graph.idx2node[i], str): # const (entity) node
node_feat[i][0] = 1
const_nodes.append(i)
elif isinstance(graph.idx2node[i], tuple): # fact node
rel, args = graph.idx2node[i]
node_feat[i][1 + graph.rel2idx[rel]] = 1
return node_feat, torch.LongTensor(const_nodes)
class MLP(nn.Module):
def __init__(self, input_size, num_layers, hidden_size, output_size):
super(MLP, self).__init__()
self.input_linear = nn.Linear(input_size, hidden_size)
self.hidden = nn.ModuleList()
for _ in range(num_layers - 1):
self.hidden.append(nn.Linear(hidden_size, hidden_size))
self.output_linear = nn.Linear(hidden_size, output_size)
def forward(self, x):
h = F.relu(self.input_linear(x))
for layer in self.hidden:
h = F.relu(layer(h))
output = self.output_linear(h)
return output