forked from hojunroks/ETRI2022
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain.py
139 lines (116 loc) · 6.72 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
from model import LSTM, TransformerBased, MLP
import matplotlib.pyplot as plt
import torch
import torch.nn as nn
import numpy as np
import os
from data import load_data, load_data_lstm, load_data_mlp
from argparse import ArgumentParser
from utils import evaluate
from torch.utils.tensorboard import SummaryWriter
import datetime
import pdb
PERSON_DIRS = [0,6,10,12,20,25,30]
def main():
########## PARSE ARUGMENTS ###########
parser = ArgumentParser()
parser.add_argument('--model_name', type=str, default="lstm")
parser.add_argument('--data_dir', type=str, default="/data/etri_lifelog")
parser.add_argument('--act_flag', type=str, default="act")
parser.add_argument('--person_index', type=int, default=1)
parser.add_argument('--num_epochs', type=int, default=5000)
parser.add_argument('--lr', type=float, default=0.00001)
parser.add_argument('--weight_decay', type=float, default=0.01)
parser.add_argument('--hidden_size', type=int, default=128)
parser.add_argument('--num_layers', type=int, default=2)
parser.add_argument('--bidirectional', type=bool, default=False)
parser.add_argument('--test_every', type=int, default=200)
parser.add_argument('--dropout', type=float, default=0.4)
parser.add_argument('--split_ratio', type=float, default=0.67)
parser.add_argument('--use_timestamp', type=bool, default=False)
parser.add_argument('--sequence_length', type=int, default=10)
args = parser.parse_args()
############## LOAD DATA ##############
person_dir_index = 0
while person_dir_index < len(PERSON_DIRS) and PERSON_DIRS[person_dir_index] < args.person_index:
person_dir_index += 1
data_path="user{0:02d}-{1:02d}/user{2:02d}".format(PERSON_DIRS[person_dir_index-1]+1, PERSON_DIRS[person_dir_index], args.person_index)
print(data_path)
data_path = os.path.join(args.data_dir, data_path)
if args.model_name=='lstm':
train_feat, train_label, train_label_emotion, test_feat, test_label, test_label_emotion, num_classes = load_data_lstm(data_path, split_ratio=args.split_ratio, act_flag=args.act_flag, seq_len=args.sequence_length)
elif args.model_name=='MLP':
train_feat, train_label, train_label_emotion, test_feat, test_label, test_label_emotion, num_classes = load_data_mlp(data_path, split_ratio=args.split_ratio, act_flag=args.act_flag)
with torch.cuda.device(0):
train_feat = train_feat.cuda()
test_feat = test_feat.cuda()
label_act_train = train_label.cuda() # label_emotion_train
label_act_test = test_label.cuda() # label_emotion_test
label_emotion_train = train_label_emotion.cuda()
label_emotion_test = test_label_emotion.cuda()
########### INITIALIZE MODEL ###########
input_size = train_feat.shape[-1]
if args.model_name=='lstm':
model = LSTM(num_classes, input_size, args.hidden_size, args.num_layers, bidirectional_flag=args.bidirectional, dropout=args.dropout).to(0)
elif args.model_name=='MLP':
model = MLP(num_classes, input_size, args.hidden_size, args.num_layers, args.dropout).to(0)
criterion = nn.CrossEntropyLoss()
criterion_emotion = nn.HuberLoss()
optimizer = torch.optim.Adam(model.parameters(), lr=args.lr, weight_decay=args.weight_decay)
now = datetime.datetime.now()
nowDate = now.strftime('%Y-%m-%d-%H:%M:%S')
if args.model_name == 'lstm':
exp_name = 'LSTM_USER_%s_c%s_lr%s_wd%s_dr%s_bi_s%s'%(args.person_index, num_classes, args.lr, args.weight_decay, args.dropout, args.sequence_length)
elif args.model_name == 'mlp':
exp_name = 'MLP_USER_%s_c%s_lr%s_wd%s_dr%s_bi_s%s'%(args.person_index, num_classes, args.lr, args.weight_decay, args.dropout, args.sequence_length)
writer = SummaryWriter('runs/'+exp_name)
################ TRAIN #################
best_accuracy = 0.
for epoch in range(args.num_epochs):
model.train()
outputs = model(train_feat)
out_act, out_emotion = outputs
optimizer.zero_grad()
loss_act = criterion(out_act, label_act_train) #trainY one-hot index
loss_emo = criterion_emotion(out_emotion.squeeze(), label_emotion_train)
(loss_act + loss_emo).backward()
optimizer.step()
act_accu, emo_accu = evaluate(model, train_feat, label_act_train, label_emotion_train, args.sequence_length, args.model_name)
writer.add_scalar("Loss/train/emo", loss_emo, epoch)
writer.add_scalar("Loss/train/act", loss_act, epoch)
writer.add_scalar("Accuracy/train/act-top-5", act_accu[2], epoch)
writer.add_scalar("Accuracy/train/act-top-3", act_accu[1], epoch)
writer.add_scalar("Accuracy/train/act-top-1", act_accu[0], epoch)
writer.add_scalar("Accuracy/train/emo-top-1", emo_accu[0], epoch)
# print("Test")
if epoch % args.test_every == 0:
with torch.no_grad():
model.eval()
test_pred = model(test_feat)
pred_act, pred_emotion = test_pred
loss_act_test = criterion(pred_act, label_act_test)
loss_emo_test = criterion_emotion(pred_emotion.squeeze(), label_emotion_test)
act_accu_test, emo_accu_test = evaluate(model, test_feat, label_act_test, label_emotion_test, args.sequence_length, args.model_name)
writer.add_scalar("Loss/test/emo", loss_emo_test, epoch)
writer.add_scalar("Loss/test/act", loss_act_test, epoch)
writer.add_scalar("Accuracy/test/act-top-5", act_accu_test[2], epoch)
writer.add_scalar("Accuracy/test/act-top-3", act_accu_test[1], epoch)
writer.add_scalar("Accuracy/test/act-top-1", act_accu_test[0], epoch)
writer.add_scalar("Accuracy/test/emo-top-1", emo_accu_test[0], epoch)
if best_accuracy <= act_accu_test[0]: # based on act top-1 accuracy
best_accuracy = act_accu_test[0]
best_accus = np.concatenate((act_accu_test, emo_accu_test), axis=-1)
save_dict = {
"epoch": epoch,
"model_state_dict": model.state_dict(),
"optimizer_state_dict": optimizer.state_dict(),
"accuracy": best_accuracy,
}
save_path = "./wgt/" + exp_name
if os.path.exists(save_path) == False:
os.mkdir(save_path)
save_model_name = os.path.join(save_path, 'best.ckpt')
torch.save(save_dict, save_model_name)
np.save(os.path.join(save_path, "best_accu.npy"), best_accus)
if __name__=='__main__':
main()