forked from tkim-snu/GLACNet
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathbuild_vocab.py
79 lines (65 loc) · 2.3 KB
/
build_vocab.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
import nltk
import pickle
import argparse
from collections import Counter
from vist import VIST
class Vocabulary(object):
def __init__(self):
self.word2idx = {}
self.idx2word = {}
self.idx = 0
def add_word(self, word):
if not word in self.word2idx:
self.word2idx[word] = self.idx
self.idx2word[self.idx] = word
self.idx += 1
def __call__(self, word):
if not word in self.word2idx:
return self.word2idx['<unk>']
return self.word2idx[word]
def __len__(self):
return len(self.word2idx)
def build_vocab(sis_file, threshold):
vist = VIST(sis_file, )
counter = Counter()
ids = vist.stories.keys()
for i, id in enumerate(ids):
story = vist.stories[id]
for annotation in story:
caption = annotation['text']
tokens = []
try:
tokens = nltk.tokenize.word_tokenize(caption.lower())
except Exception:
pass
counter.update(tokens)
if i % 1000 == 0:
print("[%d/%d] Tokenized the story captions." %(i, len(ids)))
words = [word for word, cnt in counter.items() if cnt >= threshold]
vocab = Vocabulary()
vocab.add_word('<pad>')
vocab.add_word('<start>')
vocab.add_word('<end>')
vocab.add_word('<unk>')
for i, word in enumerate(words):
vocab.add_word(word)
return vocab
def main(args):
vocab = build_vocab(sis_file=args.sis_path,
threshold=args.threshold)
vocab_path = args.vocab_path
with open(vocab_path, 'wb') as f:
pickle.dump(vocab, f)
print("Total vocabulary size: %d" %len(vocab))
print("Saved the vocabulary wrapper to '%s'" %vocab_path)
if __name__ == '__main__':
parser = argparse.ArgumentParser()
parser.add_argument('--sis_path', type=str,
default='./data/sis/train.story-in-sequence.json',
help='path for train sis file')
parser.add_argument('--vocab_path', type=str, default='./models/vocab.pkl',
help='path for saving vocabulary wrapper')
parser.add_argument('--threshold', type=int, default=4,
help='minimum word count threshold')
args = parser.parse_args()
main(args)