-
Notifications
You must be signed in to change notification settings - Fork 682
/
Copy pathInceptionTimePlus.py
193 lines (165 loc) · 9.64 KB
/
InceptionTimePlus.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
# AUTOGENERATED! DO NOT EDIT! File to edit: ../../nbs/036_models.InceptionTimePlus.ipynb.
# %% auto 0
__all__ = ['InceptionTimePlus17x17', 'InceptionTimePlus32x32', 'InceptionTimePlus47x47', 'InceptionTimePlus62x62',
'InceptionTimeXLPlus', 'InceptionModulePlus', 'InceptionBlockPlus', 'InceptionTimePlus', 'InCoordTime',
'XCoordTime', 'MultiInceptionTimePlus']
# %% ../../nbs/036_models.InceptionTimePlus.ipynb 4
from ..imports import *
from collections import OrderedDict
from fastai.layers import *
from ..utils import *
from .layers import *
from .utils import *
# %% ../../nbs/036_models.InceptionTimePlus.ipynb 5
# This is an unofficial PyTorch implementation by Ignacio Oguiza - oguiza@timeseriesAI.co modified from:
# Fawaz, H. I., Lucas, B., Forestier, G., Pelletier, C., Schmidt, D. F., Weber, J., ... & Petitjean, F. (2019).
# InceptionTime: Finding AlexNet for Time Series Classification. arXiv preprint arXiv:1909.04939.
# Official InceptionTime tensorflow implementation: https://github.com/hfawaz/InceptionTime
class InceptionModulePlus(Module):
def __init__(self, ni, nf, ks=40, bottleneck=True, padding='same', coord=False, separable=False, dilation=1, stride=1, conv_dropout=0., sa=False, se=None,
norm='Batch', zero_norm=False, bn_1st=True, act=nn.ReLU, act_kwargs={}):
if not (is_listy(ks) and len(ks) == 3):
if isinstance(ks, Integral): ks = [ks // (2**i) for i in range(3)]
ks = [ksi if ksi % 2 != 0 else ksi - 1 for ksi in ks] # ensure odd ks for padding='same'
bottleneck = False if ni == nf else bottleneck
self.bottleneck = Conv(ni, nf, 1, coord=coord, bias=False) if bottleneck else noop #
self.convs = nn.ModuleList()
for i in range(len(ks)): self.convs.append(Conv(nf if bottleneck else ni, nf, ks[i], padding=padding, coord=coord, separable=separable,
dilation=dilation**i, stride=stride, bias=False))
self.mp_conv = nn.Sequential(*[nn.MaxPool1d(3, stride=1, padding=1), Conv(ni, nf, 1, coord=coord, bias=False)])
self.concat = Concat()
self.norm = Norm(nf * 4, norm=norm, zero_norm=zero_norm)
self.conv_dropout = nn.Dropout(conv_dropout) if conv_dropout else noop
self.sa = SimpleSelfAttention(nf * 4) if sa else noop
self.act = act(**act_kwargs) if act else noop
self.se = nn.Sequential(SqueezeExciteBlock(nf * 4, reduction=se), BN1d(nf * 4)) if se else noop
self._init_cnn(self)
def _init_cnn(self, m):
if getattr(self, 'bias', None) is not None: nn.init.constant_(self.bias, 0)
if isinstance(self, (nn.Conv1d,nn.Conv2d,nn.Conv3d,nn.Linear)): nn.init.kaiming_normal_(self.weight)
for l in m.children(): self._init_cnn(l)
def forward(self, x):
input_tensor = x
x = self.bottleneck(x)
x = self.concat([l(x) for l in self.convs] + [self.mp_conv(input_tensor)])
x = self.norm(x)
x = self.conv_dropout(x)
x = self.sa(x)
x = self.act(x)
x = self.se(x)
return x
@delegates(InceptionModulePlus.__init__)
class InceptionBlockPlus(Module):
def __init__(self, ni, nf, residual=True, depth=6, coord=False, norm='Batch', zero_norm=False, act=nn.ReLU, act_kwargs={}, sa=False, se=None,
stoch_depth=1., **kwargs):
self.residual, self.depth = residual, depth
self.inception, self.shortcut, self.act = nn.ModuleList(), nn.ModuleList(), nn.ModuleList()
for d in range(depth):
self.inception.append(InceptionModulePlus(ni if d == 0 else nf * 4, nf, coord=coord, norm=norm,
zero_norm=zero_norm if d % 3 == 2 else False,
act=act if d % 3 != 2 else None, act_kwargs=act_kwargs,
sa=sa if d % 3 == 2 else False,
se=se if d % 3 != 2 else None,
**kwargs))
if self.residual and d % 3 == 2:
n_in, n_out = ni if d == 2 else nf * 4, nf * 4
self.shortcut.append(Norm(n_in, norm=norm) if n_in == n_out else ConvBlock(n_in, n_out, 1, coord=coord, bias=False, norm=norm, act=None))
self.act.append(act(**act_kwargs))
self.add = Add()
if stoch_depth != 0: keep_prob = np.linspace(1, stoch_depth, depth)
else: keep_prob = np.array([1] * depth)
self.keep_prob = keep_prob
def forward(self, x):
res = x
for i in range(self.depth):
if self.keep_prob[i] > random.random() or not self.training:
x = self.inception[i](x)
if self.residual and i % 3 == 2:
res = x = self.act[i//3](self.add(x, self.shortcut[i//3](res)))
return x
# %% ../../nbs/036_models.InceptionTimePlus.ipynb 6
@delegates(InceptionModulePlus.__init__)
class InceptionTimePlus(nn.Sequential):
def __init__(self, c_in, c_out, seq_len=None, nf=32, nb_filters=None,
flatten=False, concat_pool=False, fc_dropout=0., bn=False, y_range=None, custom_head=None, **kwargs):
if nb_filters is not None: nf = nb_filters
else: nf = ifnone(nf, nb_filters) # for compatibility
backbone = InceptionBlockPlus(c_in, nf, **kwargs)
#head
self.head_nf = nf * 4
self.c_out = c_out
self.seq_len = seq_len
if custom_head is not None:
if isinstance(custom_head, nn.Module): head = custom_head
else: head = custom_head(self.head_nf, c_out, seq_len)
else: head = self.create_head(self.head_nf, c_out, seq_len, flatten=flatten, concat_pool=concat_pool,
fc_dropout=fc_dropout, bn=bn, y_range=y_range)
layers = OrderedDict([('backbone', nn.Sequential(backbone)), ('head', nn.Sequential(head))])
super().__init__(layers)
def create_head(self, nf, c_out, seq_len, flatten=False, concat_pool=False, fc_dropout=0., bn=False, y_range=None):
if flatten:
nf *= seq_len
layers = [Flatten()]
else:
if concat_pool: nf *= 2
layers = [GACP1d(1) if concat_pool else GAP1d(1)]
layers += [LinBnDrop(nf, c_out, bn=bn, p=fc_dropout)]
if y_range: layers += [SigmoidRange(*y_range)]
return nn.Sequential(*layers)
# %% ../../nbs/036_models.InceptionTimePlus.ipynb 7
class InCoordTime(InceptionTimePlus):
def __init__(self, *args, coord=True, zero_norm=True, **kwargs):
super().__init__(*args, coord=coord, zero_norm=zero_norm, **kwargs)
class XCoordTime(InceptionTimePlus):
def __init__(self, *args, coord=True, separable=True, zero_norm=True, **kwargs):
super().__init__(*args, coord=coord, separable=separable, zero_norm=zero_norm, **kwargs)
InceptionTimePlus17x17 = named_partial('InceptionTimePlus17x17', InceptionTimePlus, nf=17, depth=3)
InceptionTimePlus32x32 = named_partial('InceptionTimePlus32x32', InceptionTimePlus)
InceptionTimePlus47x47 = named_partial('InceptionTimePlus47x47', InceptionTimePlus, nf=47, depth=9)
InceptionTimePlus62x62 = named_partial('InceptionTimePlus62x62', InceptionTimePlus, nf=62, depth=9)
InceptionTimeXLPlus = named_partial('InceptionTimeXLPlus', InceptionTimePlus, nf=64, depth=12)
# %% ../../nbs/036_models.InceptionTimePlus.ipynb 14
@delegates(InceptionTimePlus.__init__)
class MultiInceptionTimePlus(nn.Sequential):
"""Class that allows you to create a model with multiple branches of InceptionTimePlus."""
_arch = InceptionTimePlus
def __init__(self, feat_list, c_out, seq_len=None, nf=32, nb_filters=None, depth=6, stoch_depth=1.,
flatten=False, concat_pool=False, fc_dropout=0., bn=False, y_range=None, custom_head=None, **kwargs):
"""
Args:
feat_list: list with number of features that will be passed to each body.
"""
self.feat_list = [feat_list] if isinstance(feat_list, int) else feat_list
# Backbone
branches = nn.ModuleList()
self.head_nf = 0
for feat in self.feat_list:
if is_listy(feat): feat = len(feat)
m = build_ts_model(self._arch, c_in=feat, c_out=c_out, seq_len=seq_len, nf=nf, nb_filters=nb_filters,
depth=depth, stoch_depth=stoch_depth, **kwargs)
self.head_nf += output_size_calculator(m[0], feat, ifnone(seq_len, 10))[0]
branches.append(m.backbone)
backbone = _Splitter(self.feat_list, branches)
# Head
self.c_out = c_out
self.seq_len = seq_len
if custom_head is None:
head = self._arch.create_head(self, self.head_nf, c_out, seq_len, flatten=flatten, concat_pool=concat_pool,
fc_dropout=fc_dropout, bn=bn, y_range=y_range)
else:
head = custom_head(self.head_nf, c_out, seq_len)
layers = OrderedDict([('backbone', nn.Sequential(backbone)), ('head', nn.Sequential(head))])
super().__init__(layers)
# %% ../../nbs/036_models.InceptionTimePlus.ipynb 15
class _Splitter(Module):
def __init__(self, feat_list, branches):
self.feat_list, self.branches = feat_list, branches
def forward(self, x):
if is_listy(self.feat_list[0]):
x = [x[:, feat] for feat in self.feat_list]
else:
x = torch.split(x, self.feat_list, dim=1)
_out = []
for xi, branch in zip(x, self.branches): _out.append(branch(xi))
output = torch.cat(_out, dim=1)
return output