-
Notifications
You must be signed in to change notification settings - Fork 8
/
Copy pathda_resnet18_mnist.py
328 lines (238 loc) · 11.6 KB
/
da_resnet18_mnist.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
from __future__ import print_function
from collections import defaultdict
import cPickle as pickle
from PIL import Image
from six.moves import range
import sys
sys.setrecursionlimit(2**25)
import keras.backend as K
from keras.datasets import mnist
from keras.layers import Input, Dense, Reshape, Flatten, Embedding, merge, Dropout
from keras.layers.core import Activation
from keras.layers.advanced_activations import LeakyReLU
from keras.layers.convolutional import UpSampling2D, Convolution2D, MaxPooling2D
from keras.models import Sequential, Model
from keras.optimizers import Adam
from keras.utils.generic_utils import Progbar
import numpy as np
import resnet
# from pyimagesearch.cnn.networks import LeNet
from keras.optimizers import SGD, RMSprop, Adagrad, Adadelta, Adamax, Nadam
from keras.utils import np_utils
np.random.seed(31337)
K.set_image_dim_ordering('th')
def build_generator(latent_size):
# we will map a pair of (z, L), where z is a latent vector and L is a
# label drawn from P_c, to image space (..., 1, 28, 28)
cnn = Sequential()
cnn.add(Dense(1024, input_dim=latent_size, activation='relu'))
cnn.add(Dense(128 * 7 * 7, activation='relu'))
cnn.add(Reshape((128, 7, 7)))
# upsample to (..., 14, 14)
cnn.add(UpSampling2D(size=(2, 2)))
cnn.add(Convolution2D(256, 5, 5, border_mode='same',
activation='relu', init='glorot_normal'))
# upsample to (..., 28, 28)
cnn.add(UpSampling2D(size=(2, 2)))
cnn.add(Convolution2D(128, 5, 5, border_mode='same',
activation='relu', init='glorot_normal'))
# take a channel axis reduction
cnn.add(Convolution2D(1, 2, 2, border_mode='same',
activation='tanh', init='glorot_normal'))
# this is the z space commonly refered to in GAN papers
latent = Input(shape=(latent_size, ))
# this will be our label
image_class = Input(shape=(1,), dtype='int32')
# 10 classes in MNIST
cls = Flatten()(Embedding(10, latent_size,
init='glorot_normal')(image_class))
# hadamard product between z-space and a class conditional embedding
h = merge([latent, cls], mode='mul')
fake_image = cnn(h)
return Model(input=[latent, image_class], output=fake_image)
def build_discriminator():
# build a relatively standard conv net, with LeakyReLUs as suggested in
# the reference paper
cnn = Sequential()
cnn.add(Convolution2D(32, 3, 3, border_mode='same', subsample=(2, 2),
input_shape=(1, 28, 28)))
cnn.add(LeakyReLU())
cnn.add(Dropout(0.3))
cnn.add(Convolution2D(64, 3, 3, border_mode='same', subsample=(1, 1)))
cnn.add(LeakyReLU())
cnn.add(Dropout(0.3))
cnn.add(Convolution2D(128, 3, 3, border_mode='same', subsample=(2, 2)))
cnn.add(LeakyReLU())
cnn.add(Dropout(0.3))
cnn.add(Convolution2D(256, 3, 3, border_mode='same', subsample=(1, 1)))
cnn.add(LeakyReLU())
cnn.add(Dropout(0.3))
cnn.add(Flatten())
image = Input(shape=(1, 28, 28))
features = cnn(image)
# output (name=generation) is whether or not the discriminator
# thinks the image that is being shown is fake.
fake = Dense(1, activation='sigmoid', name='generation')(features)
return Model(input=image, output=fake)
def build_resnet(): # source: https://github.com/raghakot/keras-resnet
# Model
model = resnet.ResnetBuilder.build_resnet_18((1, 28, 28), 10)
# model = resnet.ResnetBuilder.build_resnet_34((1, 28, 28), 10)
# model = resnet.ResnetBuilder.build_resnet_50((1, 28, 28), 10)
# model = resnet.ResnetBuilder.build_resnet_101((1, 28, 28), 10)
# model = resnet.ResnetBuilder.build_resnet_152((1, 28, 28), 10)
image = Input(shape=(1, 28, 28))
aux = model(image)
return Model(input=image, output=aux)
# return model
if __name__ == '__main__':
# batch and latent size taken from the paper
nb_epochs = 100
batch_size = 100
latent_size = 100
nb_classes = 10
# Adam parameters suggested in https://arxiv.org/abs/1511.06434
adam_lr = 0.0002
adam_beta_1 = 0.5
# build the discriminator
discriminator = build_discriminator()
opt = SGD(lr=0.01)
discriminator.compile(
optimizer=opt,
loss= 'binary_crossentropy')
# build the classifier
resnet = build_resnet()
resnet.compile(loss="categorical_crossentropy", optimizer='adadelta', metrics=["accuracy"])
# build the generator
generator = build_generator(latent_size)
generator.compile(optimizer=Adam(lr=adam_lr, beta_1=adam_beta_1),
loss='binary_crossentropy')
latent = Input(shape=(latent_size, ))
image_class = Input(shape=(1,), dtype='int32')
# get a fake image
fake_img = generator([latent, image_class])
# we only want to be able to train generation for the combined model
discriminator.trainable = False
resnet.trainable = False
fake = discriminator(fake_img)
aux = resnet(fake_img)
combined = Model(input=[latent, image_class], output=[fake, aux])
combined.compile(
optimizer=Adam(lr=adam_lr, beta_1=adam_beta_1),
loss=['binary_crossentropy', 'categorical_crossentropy']
)
# get our mnist data, and force it to be of shape (..., 1, 28, 28) with
# range [-1, 1]
(X_train, y_train), (X_test, y_test) = mnist.load_data()
X_train = (X_train.astype(np.float32) - 127.5) / 127.5
X_train = np.expand_dims(X_train, axis=1)
X_test = (X_test.astype(np.float32) - 127.5) / 127.5
X_test = np.expand_dims(X_test, axis=1)
Y_train = np_utils.to_categorical(y_train, nb_classes)
Y_test = np_utils.to_categorical(y_test, nb_classes)
nb_train, nb_test = X_train.shape[0], X_test.shape[0]
train_history = defaultdict(list)
test_history = defaultdict(list)
# fo = open("accuracy_save.txt", "wb")
for epoch in range(nb_epochs):
print('Epoch {} of {}'.format(epoch + 1, nb_epochs))
nb_batches = int(X_train.shape[0] / batch_size)
progress_bar = Progbar(target=nb_batches)
epoch_gen_loss = []
epoch_disc_loss = []
epoch_resnet_loss =[]
for index in range(nb_batches):
progress_bar.update(index)
# generate a new batch of noise
noise = np.random.normal(loc=0.0, scale=1, size=(batch_size, latent_size))
# noise = np.random.uniform(-1, 1, (batch_size, latent_size))
# get a batch of real images
image_batch = X_train[index * batch_size:(index + 1) * batch_size]
label_batch = y_train[index * batch_size:(index + 1) * batch_size]
# sample some labels from p_c
sampled_labels = np.random.randint(0, 10, batch_size)
# generate a batch of fake images, using the generated labels as a
# conditioner. We reshape the sampled labels to be
# (batch_size, 1) so that we can feed them into the embedding
# layer as a length one sequence
generated_images = generator.predict(
[noise, sampled_labels.reshape((-1, 1))], verbose=0)
X = np.concatenate((image_batch, generated_images))
y = np.array([1] * batch_size + [0] *batch_size)
aux_y = np.concatenate((label_batch, sampled_labels), axis=0)
aux_y = np_utils.to_categorical(aux_y, 10)
# see if the discriminator can figure itself out...
epoch_disc_loss.append(discriminator.train_on_batch(X, y))
#
epoch_resnet_loss.append(resnet.train_on_batch(X, aux_y))
# make new noise. we generate 2 * batch size here such that we have
# the generator optimize over an identical number of images as the
# discriminator
noise = np.random.normal(loc=0.0, scale=1, size=(2 * batch_size, latent_size))
# noise = np.random.uniform(-1, 1, (2 * batch_size, latent_size))
sampled_labels = np.random.randint(0, 10, 2 * batch_size).reshape(-1, 1)
aux_sampled_labels = np_utils.to_categorical(sampled_labels, 10)
# we want to train the generator to trick the discriminator
# For the generator, we want all the {fake, not-fake} labels to say
# not-fake
trick = np.ones(2 * batch_size)
epoch_gen_loss.append(combined.train_on_batch(
[noise, sampled_labels], [trick, aux_sampled_labels]))
print('\nTesting for epoch {}:'.format(epoch + 1))
# evaluate the testing loss here
# generate a new batch of noise
noise = np.random.normal(loc=0.0, scale=1, size=(nb_test, latent_size))
# noise = np.random.uniform(-1, 1, (nb_test, latent_size))
# sample some labels from p_c and generate images from them
sampled_labels = np.random.randint(0, 10, nb_test)
generated_images = generator.predict(
[noise, sampled_labels.reshape((-1, 1))], verbose=False)
X = np.concatenate((X_test, generated_images))
y = np.array([1] * nb_test + [0] * nb_test)
aux_y = np.concatenate((y_test, sampled_labels), axis=0)
aux_y = np_utils.to_categorical(aux_y, 10)
# see if the discriminator can figure itself out...
discriminator_test_loss = discriminator.evaluate(X, y, verbose=False)
discriminator_train_loss = np.mean(np.array(epoch_disc_loss), axis=0)
resnet_test_loss = resnet.evaluate(X, aux_y, verbose=False)
resnet_train_loss = np.mean(np.array(epoch_resnet_loss), axis=0)
# # evaluate the test classification accuracy
#
# (loss, accuracy) = resnet.evaluate(X_test, Y_test, batch_size=batch_size, verbose=0)
#
# # show the accuracy on the testing set
# print("\n[INFO] accuracy: {:.2f}%".format(accuracy * 100))
#
# fo.write('Test accuracy at the ' + str(epoch+1) + '-th iteration is: ' + str(accuracy) + '\n')
# make new noise
noise = np.random.normal(loc=0.0, scale=1, size=(2 * nb_test, latent_size))
# noise = np.random.uniform(-1, 1, (2 * nb_test, latent_size))
sampled_labels = np.random.randint(0, 10, 2 * nb_test).reshape(-1, 1)
aux_sampled_labels = np_utils.to_categorical(sampled_labels, 10)
trick = np.ones(2 * nb_test)
generator_test_loss = combined.evaluate(
[noise, sampled_labels],
[trick, aux_sampled_labels], verbose=False)
generator_train_loss = np.mean(np.array(epoch_gen_loss), axis=0)
# generate an epoch report on performance
train_history['generator'].append(generator_train_loss)
train_history['discriminator'].append(discriminator_train_loss)
train_history['resnet'].append(resnet_train_loss)
test_history['generator'].append(generator_test_loss)
test_history['discriminator'].append(discriminator_test_loss)
test_history['resnet'].append(resnet_test_loss)
# save weights every epoch
generator.save_weights(
'params_generator_epoch_{0:03d}.hdf5'.format(epoch), True)
discriminator.save_weights(
'params_discriminator_epoch_{0:03d}.hdf5'.format(epoch), True)
resnet.save_weights(
'params_resnet_epoch_{0:03d}.hdf5'.format(epoch), True)
pickle.dump({'train': train_history, 'test': test_history},
open('acgan-history.pkl', 'wb'))
# evaluate the test classification accuracy
(loss, accuracy) = resnet.evaluate(X_test, Y_test,
batch_size=batch_size, verbose=0)
# show the accuracy on the testing set
print("\n [INFO] Test accuracy: {:.2f}%".format(accuracy * 100))
# fo.close()