Skip to content

Commit a3b4c1d

Browse files
author
Quarto GHA Workflow Runner
committed
Built site for gh-pages
1 parent a62434a commit a3b4c1d

14 files changed

+119
-24
lines changed

.nojekyll

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -1 +1 @@
1-
51884430
1+
07025b1e

assets/misc/abs_dyn_bip.jpg

24.2 KB
Loading

assets/misc/abs_tboost.jpg

30.8 KB
Loading

assets/misc/abs_tpp_cikm_2022.jpg

9.33 KB
Loading

assets/misc/adv_synth_ts.jpg

166 KB
Loading

assets/misc/arch_timegan_lstnet.jpg

117 KB
Loading

assets/misc/badminton_cmi2016.jpg

22.7 KB
Loading

assets/misc/mp_eccv_2020.jpg

19.3 KB
Loading

blog/index.html

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -214,7 +214,7 @@ <h5 class="quarto-listing-category-title">Categories</h5><div class="quarto-list
214214

215215
<div class="quarto-listing quarto-listing-container-default" id="listing-listing">
216216
<div class="list quarto-listing-default">
217-
<div class="quarto-post image-right" data-index="0" data-listing-date-sort="1712880000000" data-listing-file-modified-sort="1713979483770" data-listing-date-modified-sort="NaN" data-listing-reading-time-sort="1" data-listing-word-count-sort="25">
217+
<div class="quarto-post image-right" data-index="0" data-listing-date-sort="1712880000000" data-listing-file-modified-sort="1714298971834" data-listing-date-modified-sort="NaN" data-listing-reading-time-sort="1" data-listing-word-count-sort="25">
218218
<div class="thumbnail">
219219
<p><a href="../blog/posts/welcome/index.html" class="no-external"></a></p><a href="../blog/posts/welcome/index.html" class="no-external">
220220
<p class="card-img-top"><img src="posts/welcome/thumbnail.jpg" class="thumbnail-image card-img"/></p>

index.html

Lines changed: 5 additions & 4 deletions
Original file line numberDiff line numberDiff line change
@@ -64,11 +64,11 @@
6464

6565
<link rel="stylesheet" href="styles.css">
6666
<meta property="og:title" content="Govind Waghmare">
67-
<meta property="og:description" content="Machine Learning Researcher working on graphs and NLP.">
67+
<meta property="og:description" content="Machine Learning Researcher.">
6868
<meta property="og:image" content="https://waghmaregovind.github.io/assets/profile.jpg">
6969
<meta property="og:site_name" content="Govind Waghmare">
7070
<meta name="twitter:title" content="Govind Waghmare">
71-
<meta name="twitter:description" content="Machine Learning Researcher working on graphs and NLP.">
71+
<meta name="twitter:description" content="Machine Learning Researcher.">
7272
<meta name="twitter:image" content="https://waghmaregovind.github.io/assets/profile.jpg">
7373
<meta name="twitter:creator" content="@waghmaregovind">
7474
<meta name="twitter:card" content="summary_large_image">
@@ -134,13 +134,14 @@
134134
<header id="title-block-header" class="quarto-title-block default">
135135
<div class="quarto-title">
136136
<h1 class="title">Govind Waghmare</h1>
137-
<p class="subtitle lead"></p><p>Machine Learning Researcher working on graphs and NLP.</p><p></p>
137+
<p class="subtitle lead"></p><p>Machine Learning Researcher.</p><p></p>
138138
</div>
139139
<div class="quarto-title-meta">
140140
</div>
141141
</header>
142142
<div class="about-contents"><main class="content" id="quarto-document-content">
143-
<p>I currently work at Mastercard as a Senior Data Scientist. My research interests include temporal graphs and NLP for transactional data.</p>
143+
<p>Welcome to my personal website 👋!</p>
144+
<p>I currently work at Mastercard as a Senior Data Scientist. I manage transactional data, which encompasses tabular and temporal dimensions. It involves intricate temporal data modeling utilizing time-series analysis, temporal point processes, and temporal graph neural networks. Additionally, I am actively engaged in prototyping the integration of Large Language Model (LLM)–based embeddings, harnessing their capabilities to optimize performance across transactional data scenarios. My daily responsibilities encompass the end-to-end process of designing, developing, and deploying machine learning and deep learning models at scale, ensuring robust and efficient solutions.</p>
144145
<section id="education" class="level2">
145146
<h2 data-anchor-id="education">Education</h2>
146147
<p><img src="assets/mortarboard-fill.svg"> &nbsp; Masters in Computational Data Sciences, 2020 <br> &nbsp; &nbsp; &nbsp; &nbsp; <span style="color:gray"> Indian Institute of Science | Bangalore, India </span></p>

publications.html

Lines changed: 102 additions & 12 deletions
Original file line numberDiff line numberDiff line change
@@ -150,18 +150,108 @@ <h1 class="title">Publications</h1>
150150

151151
<p>My <a href="https://scholar.google.com/citations?user=QtutNncAAAAJ">Google Scholar</a> 📝 profile.</p>
152152
<hr>
153-
<ul>
154-
<li><p><strong><a href="https://dl.acm.org/doi/abs/10.1145/3604237.3626911">Learning Temporal Representations of Bipartite Financial Graphs</a> <br> Pritam Kumar Nath, Govind Waghmare, Nikhil Tumbde, Nitish Kumar, Siddhartha Asthana </strong> <br> <em>International Conference on AI in Finance (ICAIF), 2023</em></p></li>
155-
<li><p><strong><a href="https://openreview.net/pdf?id=API0yII2Ua">TBoost: Gradient Boosting Temporal Graph Neural Networks</a> <br> Pritam Nath, Govind Waghmare, Nancy Agrawal, Nitish Kumar, Siddhartha Asthana</strong> <br> <em>Temporal Graph Learning Workshop @ NeurIPS, 2023</em></p></li>
156-
<li><p><strong><a href="https://arxiv.org/abs/2210.15294">Modeling Inter-Dependence Between Time and Mark in Multivariate Temporal Point Processes</a> <br> Govind Waghmare, Ankur Debnath, Siddhartha Asthana, Aakarsh Malhotra</strong> <br> <em>Conference on Information &amp; Knowledge Management (CIKM), 2022</em></p></li>
157-
<li><p><strong><a href="https://link.springer.com/chapter/10.1007/978-3-030-93736-2_24">Adversarial Generation of Temporal Data: A Critique on Fidelity of Synthetic Data</a> <br> Ankur Debnath, Nitish Gupta, Govind Waghmare, Hardik Wadhwa, Siddhartha Asthana, Ankur Arora</strong> <br> <em>Joint European Conference on Machine Learning and Knowledge Discovery in Databases (ECML PKDD), 2021</em></p></li>
158-
<li><p><strong><a href="https://kdd-milets.github.io/milets2021/papers/MiLeTS2021_paper_7.pdf">Exploring generative data augmentation in multivariate time series forecasting: opportunities and challenges</a> <br> Ankur Debnath, Govind Waghmare, Hardik Wadhwa, Siddhartha Asthana, Ankur Arora</strong> <br> <em>KDD Workshop on Mining and Learning from Time Series (MileTS), 2021</em></p></li>
159-
<li><p><strong><a href="https://arxiv.org/pdf/2008.01388.pdf">Unsupervised cross-modal alignment for multi-person 3d pose estimation</a> <br> Jogendra Nath Kundu, Ambareesh Revanur, Govind Vitthal Waghmare, Rahul Mysore Venkatesh, R Venkatesh Babu</strong> <br> <em>European Conference on Computer Vision (ECCV), 2020</em></p>
160-
<ul>
161-
<li><a href="https://sites.google.com/view/multiperson3D">Project page</a></li>
162-
</ul></li>
163-
<li><p><strong><a href="https://ieeexplore.ieee.org/abstract/document/7413746/">Badminton shuttlecock detection and prediction of trajectory using multiple 2 dimensional scanners</a> <br> Govind Waghmare, Sneha Borkar, Vishal Saley, Hemant Chinchore, Shivraj Wabale</strong> <br> <em>IEEE First International Conference on Control, Measurement and Instrumentation (CMI), 2016</em></p></li>
164-
</ul>
153+
<!--
154+
155+
* **[Learning Temporal Representations of Bipartite Financial Graphs](https://dl.acm.org/doi/abs/10.1145/3604237.3626911)
156+
<br/> Pritam Kumar Nath, Govind Waghmare, Nikhil Tumbde, Nitish Kumar, Siddhartha Asthana **
157+
<br/> *International Conference on AI in Finance (ICAIF), 2023*
158+
159+
---
160+
161+
162+
* **[TBoost: Gradient Boosting Temporal Graph Neural Networks](https://openreview.net/pdf?id=API0yII2Ua)
163+
<br/> Pritam Nath, Govind Waghmare, Nancy Agrawal, Nitish Kumar, Siddhartha Asthana**
164+
<br/> *Temporal Graph Learning Workshop @ NeurIPS, 2023*
165+
166+
---
167+
168+
169+
* **[Modeling Inter-Dependence Between Time and Mark in Multivariate Temporal Point Processes](https://arxiv.org/abs/2210.15294)
170+
<br/> Govind Waghmare, Ankur Debnath, Siddhartha Asthana, Aakarsh Malhotra**
171+
<br/> *Conference on Information & Knowledge Management (CIKM), 2022*
172+
173+
---
174+
175+
176+
* **[Adversarial Generation of Temporal Data: A Critique on Fidelity of Synthetic Data](https://link.springer.com/chapter/10.1007/978-3-030-93736-2_24)
177+
<br/> Ankur Debnath, Nitish Gupta, Govind Waghmare, Hardik Wadhwa, Siddhartha Asthana, Ankur Arora**
178+
<br/> *Joint European Conference on Machine Learning and Knowledge Discovery in Databases (ECML PKDD), 2021*
179+
180+
---
181+
182+
183+
* **[Exploring generative data augmentation in multivariate time series forecasting: opportunities and challenges](https://kdd-milets.github.io/milets2021/papers/MiLeTS2021_paper_7.pdf)
184+
<br/> Ankur Debnath, Govind Waghmare, Hardik Wadhwa, Siddhartha Asthana, Ankur Arora**
185+
<br/> *KDD Workshop on Mining and Learning from Time Series (MileTS), 2021*
186+
187+
---
188+
189+
190+
* **[Unsupervised cross-modal alignment for multi-person 3d pose estimation](https://arxiv.org/pdf/2008.01388.pdf)
191+
<br/> Jogendra Nath Kundu, Ambareesh Revanur, Govind Vitthal Waghmare, Rahul Mysore Venkatesh, R Venkatesh Babu**
192+
<br/> *European Conference on Computer Vision (ECCV), 2020*
193+
- [Project page](https://sites.google.com/view/multiperson3D)
194+
195+
---
196+
197+
198+
* **[Badminton shuttlecock detection and prediction of trajectory using multiple 2 dimensional scanners](https://ieeexplore.ieee.org/abstract/document/7413746/)
199+
<br/> Govind Waghmare, Sneha Borkar, Vishal Saley, Hemant Chinchore, Shivraj Wabale**
200+
<br/> *IEEE First International Conference on Control, Measurement and Instrumentation (CMI), 2016*
201+
202+
-->
203+
<div>
204+
<table data-quarto-postprocess="true" class="table">
205+
<colgroup>
206+
<col style="width: 50%">
207+
<col style="width: 50%">
208+
</colgroup>
209+
<tbody>
210+
<tr class="odd border_bottom">
211+
<td><img src="./assets/misc/abs_dyn_bip.jpg" class="img-fluid" width="275"></td>
212+
<td><strong><a href="https://dl.acm.org/doi/abs/10.1145/3604237.3626911">Learning Temporal Representations of Bipartite Financial Graphs</a></strong><br>
213+
Pritam Kumar Nath, <strong>Govind Waghmare</strong>, Nikhil Tumbde, Nitish Kumar, Siddhartha Asthana<br>
214+
<em>International Conference on AI in Finance (ICAIF), 2023</em></td>
215+
</tr>
216+
<tr class="even border_bottom">
217+
<td><img src="./assets/misc/abs_tboost.jpg" class="img-fluid" width="275"></td>
218+
<td><strong><a href="https://openreview.net/pdf?id=API0yII2Ua">TBoost: Gradient Boosting Temporal Graph Neural Networks</a></strong><br>
219+
Pritam Nath, <strong>Govind Waghmare</strong>, Nancy Agrawal, Nitish Kumar, Siddhartha Asthana<br>
220+
<em>Temporal Graph Learning Workshop @ NeurIPS, 2023</em></td>
221+
</tr>
222+
<tr class="odd border_bottom">
223+
<td><img src="./assets/misc/abs_tpp_cikm_2022.jpg" class="img-fluid" width="275"></td>
224+
<td><strong><a href="https://arxiv.org/abs/2210.15294">Modeling Inter-Dependence Between Time and Mark in Multivariate Temporal Point Processes</a></strong><br>
225+
<strong>Govind Waghmare</strong>, Ankur Debnath, Siddhartha Asthana, Aakarsh Malhotra<br>
226+
<em>Conference on Information &amp; Knowledge Management (CIKM), 2022</em></td>
227+
</tr>
228+
<tr class="even border_bottom">
229+
<td><img src="./assets/misc/adv_synth_ts.jpg" class="img-fluid" width="275"></td>
230+
<td><strong><a href="https://link.springer.com/chapter/10.1007/978-3-030-93736-2_24">Adversarial Generation of Temporal Data: A Critique on Fidelity of Synthetic Data</a></strong><br>
231+
Ankur Debnath, Nitish Gupta, <strong>Govind Waghmare</strong>, Hardik Wadhwa, Siddhartha Asthana, Ankur Arora<br>
232+
<em>Joint European Conference on Machine Learning and Knowledge Discovery in Databases (ECML PKDD), 2021</em></td>
233+
</tr>
234+
<tr class="odd border_bottom">
235+
<td><img src="./assets/misc/arch_timegan_lstnet.jpg" class="img-fluid" width="275"></td>
236+
<td><strong><a href="https://kdd-milets.github.io/milets2021/papers/MiLeTS2021_paper_7.pdf">Exploring generative data augmentation in multivariate time series forecasting: opportunities and challenges</a></strong><br>
237+
Ankur Debnath, <strong>Govind Waghmare</strong>, Hardik Wadhwa, Siddhartha Asthana, Ankur Arora<br>
238+
<em>KDD Workshop on Mining and Learning from Time Series (MileTS), 2021</em></td>
239+
</tr>
240+
<tr class="even border_bottom">
241+
<td><img src="./assets/misc/mp_eccv_2020.jpg" class="img-fluid" width="275"></td>
242+
<td><strong><a href="https://arxiv.org/pdf/2008.01388.pdf">Unsupervised cross-modal alignment for multi-person 3d pose estimation</a></strong><br>
243+
Jogendra Nath Kundu, Ambareesh Revanur, <strong>Govind Waghmare</strong>, Rahul Mysore Venkatesh, R Venkatesh Babu<br>
244+
<em>European Conference on Computer Vision (ECCV), 2020</em></td>
245+
</tr>
246+
<tr class="odd border_bottom">
247+
<td><img src="./assets/misc/badminton_cmi2016.jpg" class="img-fluid" width="275"></td>
248+
<td><strong><a href="https://ieeexplore.ieee.org/abstract/document/7413746/">Badminton shuttlecock detection and prediction of trajectory using multiple 2 dimensional scanners</a></strong><br>
249+
<strong>Govind Waghmare</strong>, Sneha Borkar, Vishal Saley, Hemant Chinchore, Shivraj Wabale<br>
250+
<em>IEEE First International Conference on Control, Measurement and Instrumentation (CMI), 2016</em></td>
251+
</tr>
252+
</tbody>
253+
</table>
254+
</div>
165255

166256

167257

search.json

Lines changed: 2 additions & 2 deletions
Original file line numberDiff line numberDiff line change
@@ -4,7 +4,7 @@
44
"href": "index.html",
55
"title": "Govind Waghmare",
66
"section": "",
7-
"text": "I currently work at Mastercard as a Senior Data Scientist. My research interests include temporal graphs and NLP for transactional data."
7+
"text": "Welcome to my personal website 👋!\nI currently work at Mastercard as a Senior Data Scientist. I manage transactional data, which encompasses tabular and temporal dimensions. It involves intricate temporal data modeling utilizing time-series analysis, temporal point processes, and temporal graph neural networks. Additionally, I am actively engaged in prototyping the integration of Large Language Model (LLM)–based embeddings, harnessing their capabilities to optimize performance across transactional data scenarios. My daily responsibilities encompass the end-to-end process of designing, developing, and deploying machine learning and deep learning models at scale, ensuring robust and efficient solutions."
88
},
99
{
1010
"objectID": "index.html#education",
@@ -32,7 +32,7 @@
3232
"href": "publications.html",
3333
"title": "Publications",
3434
"section": "",
35-
"text": "My Google Scholar 📝 profile.\n\n\nLearning Temporal Representations of Bipartite Financial Graphs Pritam Kumar Nath, Govind Waghmare, Nikhil Tumbde, Nitish Kumar, Siddhartha Asthana International Conference on AI in Finance (ICAIF), 2023\nTBoost: Gradient Boosting Temporal Graph Neural Networks Pritam Nath, Govind Waghmare, Nancy Agrawal, Nitish Kumar, Siddhartha Asthana Temporal Graph Learning Workshop @ NeurIPS, 2023\nModeling Inter-Dependence Between Time and Mark in Multivariate Temporal Point Processes Govind Waghmare, Ankur Debnath, Siddhartha Asthana, Aakarsh Malhotra Conference on Information & Knowledge Management (CIKM), 2022\nAdversarial Generation of Temporal Data: A Critique on Fidelity of Synthetic Data Ankur Debnath, Nitish Gupta, Govind Waghmare, Hardik Wadhwa, Siddhartha Asthana, Ankur Arora Joint European Conference on Machine Learning and Knowledge Discovery in Databases (ECML PKDD), 2021\nExploring generative data augmentation in multivariate time series forecasting: opportunities and challenges Ankur Debnath, Govind Waghmare, Hardik Wadhwa, Siddhartha Asthana, Ankur Arora KDD Workshop on Mining and Learning from Time Series (MileTS), 2021\nUnsupervised cross-modal alignment for multi-person 3d pose estimation Jogendra Nath Kundu, Ambareesh Revanur, Govind Vitthal Waghmare, Rahul Mysore Venkatesh, R Venkatesh Babu European Conference on Computer Vision (ECCV), 2020\n\nProject page\n\nBadminton shuttlecock detection and prediction of trajectory using multiple 2 dimensional scanners Govind Waghmare, Sneha Borkar, Vishal Saley, Hemant Chinchore, Shivraj Wabale IEEE First International Conference on Control, Measurement and Instrumentation (CMI), 2016"
35+
"text": "My Google Scholar 📝 profile.\n\n\n\n\n\n\n\n\n\n\n\nLearning Temporal Representations of Bipartite Financial Graphs\nPritam Kumar Nath, Govind Waghmare, Nikhil Tumbde, Nitish Kumar, Siddhartha Asthana\nInternational Conference on AI in Finance (ICAIF), 2023\n\n\n\nTBoost: Gradient Boosting Temporal Graph Neural Networks\nPritam Nath, Govind Waghmare, Nancy Agrawal, Nitish Kumar, Siddhartha Asthana\nTemporal Graph Learning Workshop @ NeurIPS, 2023\n\n\n\nModeling Inter-Dependence Between Time and Mark in Multivariate Temporal Point Processes\nGovind Waghmare, Ankur Debnath, Siddhartha Asthana, Aakarsh Malhotra\nConference on Information & Knowledge Management (CIKM), 2022\n\n\n\nAdversarial Generation of Temporal Data: A Critique on Fidelity of Synthetic Data\nAnkur Debnath, Nitish Gupta, Govind Waghmare, Hardik Wadhwa, Siddhartha Asthana, Ankur Arora\nJoint European Conference on Machine Learning and Knowledge Discovery in Databases (ECML PKDD), 2021\n\n\n\nExploring generative data augmentation in multivariate time series forecasting: opportunities and challenges\nAnkur Debnath, Govind Waghmare, Hardik Wadhwa, Siddhartha Asthana, Ankur Arora\nKDD Workshop on Mining and Learning from Time Series (MileTS), 2021\n\n\n\nUnsupervised cross-modal alignment for multi-person 3d pose estimation\nJogendra Nath Kundu, Ambareesh Revanur, Govind Waghmare, Rahul Mysore Venkatesh, R Venkatesh Babu\nEuropean Conference on Computer Vision (ECCV), 2020\n\n\n\nBadminton shuttlecock detection and prediction of trajectory using multiple 2 dimensional scanners\nGovind Waghmare, Sneha Borkar, Vishal Saley, Hemant Chinchore, Shivraj Wabale\nIEEE First International Conference on Control, Measurement and Instrumentation (CMI), 2016"
3636
},
3737
{
3838
"objectID": "blog/index.html",

sitemap.xml

Lines changed: 4 additions & 4 deletions
Original file line numberDiff line numberDiff line change
@@ -2,18 +2,18 @@
22
<urlset xmlns="http://www.sitemaps.org/schemas/sitemap/0.9">
33
<url>
44
<loc>https://waghmaregovind.github.io/index.html</loc>
5-
<lastmod>2024-04-24T17:24:43.770Z</lastmod>
5+
<lastmod>2024-04-28T10:09:31.834Z</lastmod>
66
</url>
77
<url>
88
<loc>https://waghmaregovind.github.io/blog/posts/welcome/index.html</loc>
9-
<lastmod>2024-04-24T17:24:43.770Z</lastmod>
9+
<lastmod>2024-04-28T10:09:31.834Z</lastmod>
1010
</url>
1111
<url>
1212
<loc>https://waghmaregovind.github.io/publications.html</loc>
13-
<lastmod>2024-04-24T17:24:43.770Z</lastmod>
13+
<lastmod>2024-04-28T10:09:31.834Z</lastmod>
1414
</url>
1515
<url>
1616
<loc>https://waghmaregovind.github.io/blog/index.html</loc>
17-
<lastmod>2024-04-24T17:24:43.770Z</lastmod>
17+
<lastmod>2024-04-28T10:09:31.834Z</lastmod>
1818
</url>
1919
</urlset>

styles.css

Lines changed: 4 additions & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -1 +1,5 @@
11
/* css styles */
2+
3+
tr.border_bottom td {
4+
border-bottom: 1px solid rgb(220, 214, 214);
5+
}

0 commit comments

Comments
 (0)