forked from Jianbo-Lab/HSJA
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmain.py
138 lines (113 loc) · 4.18 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
from __future__ import absolute_import, division, print_function
from build_model import ImageModel
from load_data import ImageData, split_data
from hsja import hsja
import numpy as np
import tensorflow as tf
import sys
import os
import pickle
import argparse
import scipy
import itertools
def construct_model_and_data(args):
"""
Load model and data on which the attack is carried out.
Assign target classes and images for targeted attack.
"""
data_model = args.dataset_name + args.model_name
dataset = ImageData(args.dataset_name)
x_test, y_test = dataset.x_val, dataset.y_val
reference = - dataset.x_train_mean
model = ImageModel(args.model_name, args.dataset_name,
train = False, load = True)
# Split the test dataset into two parts.
# Use the first part for setting target image for targeted attack.
x_train, y_train, x_test, y_test = split_data(x_test, y_test, model,
num_classes = model.num_classes, split_rate = 0.5,
sample_per_class = np.min([np.max([200, args.num_samples // 10 * 3]),
1000]))
outputs = {'data_model': data_model,
'x_test': x_test,
'y_test': y_test,
'model': model,
'clip_max': 1.0,
'clip_min': 0.0
}
if args.attack_type == 'targeted':
# Assign target class and image for targeted atttack.
label_train = np.argmax(y_train, axis = 1)
label_test = np.argmax(y_test, axis = 1)
x_train_by_class = [x_train[label_train == i] for i in range(model.num_classes)]
target_img_by_class = np.array([x_train_by_class[i][0] for i in range(model.num_classes)])
np.random.seed(0)
target_labels = [np.random.choice([j for j in range(model.num_classes) if j != label]) for label in label_test]
target_img_ids = [np.random.choice(len(x_train_by_class[target_label])) for target_label in target_labels]
target_images = [x_train_by_class[target_labels[j]][target_img_id] for j, target_img_id in enumerate(target_img_ids)]
outputs['target_labels'] = target_labels
outputs['target_images'] = target_images
return outputs
def attack(args):
outputs = construct_model_and_data(args)
data_model = outputs['data_model']
x_test = outputs['x_test']
y_test = outputs['y_test']
model = outputs['model']
clip_max = outputs['clip_max']
clip_min = outputs['clip_min']
if args.attack_type == 'targeted':
target_labels = outputs['target_labels']
target_images = outputs['target_images']
for i, sample in enumerate(x_test[:args.num_samples]):
label = np.argmax(y_test[i])
if args.attack_type == 'targeted':
target_label = target_labels[i]
target_image = target_images[i]
else:
target_label = None
target_image = None
print('attacking the {}th sample...'.format(i))
perturbed = hsja(model,
sample,
clip_max = 1,
clip_min = 0,
constraint = args.constraint,
num_iterations = args.num_iterations,
gamma = 1.0,
target_label = target_label,
target_image = target_image,
stepsize_search = args.stepsize_search,
max_num_evals = 1e4,
init_num_evals = 100)
image = np.concatenate([sample, np.zeros((32,8,3)), perturbed], axis = 1)
scipy.misc.imsave('{}/figs/{}-{}-{}.jpg'.format(data_model,
args.attack_type, args.constraint, i), image)
if __name__ == '__main__':
parser = argparse.ArgumentParser()
parser.add_argument('--dataset_name', type = str,
choices = ['cifar10'],
default = 'cifar10')
parser.add_argument('--model_name', type = str,
choices = ['resnet'],
default = 'resnet')
parser.add_argument('--constraint', type = str,
choices = ['l2', 'linf'],
default = 'l2')
parser.add_argument('--attack_type', type = str,
choices = ['targeted', 'untargeted'],
default = 'untargeted')
parser.add_argument('--num_samples', type = int,
default = 10)
parser.add_argument('--num_iterations', type = int,
default = 64)
parser.add_argument('--stepsize_search', type = str,
choices = ['geometric_progression', 'grid_search'],
default = 'geometric_progression')
args = parser.parse_args()
dict_a = vars(args)
data_model = args.dataset_name + args.model_name
if not os.path.exists(data_model):
os.mkdir(data_model)
if not os.path.exists('{}/figs'.format(data_model)):
os.mkdir('{}/figs'.format(data_model))
attack(args)