-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathfinetune_pruned_qlora.py
247 lines (213 loc) · 10.4 KB
/
finetune_pruned_qlora.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
import argparse
import os
import torch
from datasets import load_dataset
from transformers import AutoTokenizer, AutoModelForCausalLM, BitsAndBytesConfig
from peft import LoraConfig, PeftModel, prepare_model_for_kbit_training, get_peft_model
import bitsandbytes as bnb
from peft import LoraConfig, get_peft_model
import transformers
from trl import SFTTrainer
from utils.prompter import Prompter, ZeroPrompter
os.environ["WANDB_DISABLED"]="true"
### qlora
def main(args):
gradient_accumulation_steps = args.batch_size // args.micro_batch_size
def find_all_linear_names(model):
cls = bnb.nn.Linear4bit #if args.bits == 4 else (bnb.nn.Linear8bitLt if args.bits == 8 else torch.nn.Linear)
lora_module_names = set()
for name, module in model.named_modules():
if isinstance(module, cls):
names = name.split('.')
lora_module_names.add(names[0] if len(names) == 1 else names[-1])
if 'lm_head' in lora_module_names: # needed for 16-bit
lora_module_names.remove('lm_head')
return list(lora_module_names)
if not args.no_instruction:
prompter = Prompter(args.prompt_template_name)
else:
prompter = ZeroPrompter()
bnb_config = BitsAndBytesConfig(
load_in_4bit=True,
bnb_4bit_use_double_quant=True,
bnb_4bit_quant_type="nf4",
bnb_4bit_compute_dtype=torch.bfloat16
)
device_map = "auto"
tokenizer = AutoTokenizer.from_pretrained(args.prune_model_path,
use_fast=False, trust_remote_code=True
)
model = AutoModelForCausalLM.from_pretrained(args.prune_model_path,
trust_remote_code=True, quantization_config=bnb_config, device_map=device_map
)
print(model)
model.gradient_checkpointing_enable()
model = prepare_model_for_kbit_training(model)
modules = find_all_linear_names(model)
lora_config = LoraConfig(
r=8,
lora_alpha=16,
target_modules=modules,
lora_dropout=0.05,
bias="none",
task_type="CAUSAL_LM"
)
model = get_peft_model(model, lora_config)
trainable, total = model.get_nb_trainable_parameters()
print(f"Trainable: {trainable} | total: {total} | Percentage: {trainable/total*100:.4f}%")
tokenizer.pad_token = tokenizer.eos_token
torch.cuda.empty_cache()
def tokenize(prompt, add_eos_token=True):
result = tokenizer(
prompt,
truncation=True,
max_length=args.cutoff_len,
padding=False,
return_tensors=None,
)
if (
result["input_ids"][-1] != tokenizer.eos_token_id
and len(result["input_ids"]) < args.cutoff_len
and add_eos_token
):
result["input_ids"].append(tokenizer.eos_token_id)
result["attention_mask"].append(1)
result["labels"] = result["input_ids"].copy()
return result
def generate_and_tokenize_prompt(data_point):
if 'lamini' in args.data_path.lower():
full_prompt = prompter.generate_prompt(
data_point["instruction"],
None,
data_point["response"],
)
elif 'alpaca' in args.data_path.lower():
# print('using alpaca...')
full_prompt = prompter.generate_prompt(
data_point["instruction"],
data_point["input"],
data_point["output"],
)
else:
raise NotImplementedError
tokenized_full_prompt = tokenize(full_prompt)
if not args.train_on_inputs:
user_prompt = prompter.generate_prompt(
data_point["instruction"], data_point["input"] if 'input' in data_point.keys() else None,
)
tokenized_user_prompt = tokenize(
user_prompt, add_eos_token=args.add_eos_token
)
user_prompt_len = len(tokenized_user_prompt["input_ids"])
if args.add_eos_token:
user_prompt_len -= 1
tokenized_full_prompt["labels"] = [
-100
] * user_prompt_len + tokenized_full_prompt["labels"][
user_prompt_len:
] # could be sped up, probably
return tokenized_full_prompt
# Load Train Dataset
data = load_dataset(args.data_path)
if args.val_set_size > 0:
train_val = data["train"].train_test_split(
test_size=args.val_set_size, shuffle=True, seed=42
)
train_data = (
train_val["train"].shuffle().map(generate_and_tokenize_prompt)
)
val_data = {
args.data_path: train_val["test"].shuffle().map(generate_and_tokenize_prompt),
}
else:
train_data = data["train"].shuffle().map(generate_and_tokenize_prompt)
val_data = None
trainer = SFTTrainer(
model=model,
train_dataset=train_data,
eval_dataset=val_data,
dataset_text_field="text",
peft_config=lora_config,
args=transformers.TrainingArguments(
per_device_train_batch_size=args.micro_batch_size,
gradient_accumulation_steps=gradient_accumulation_steps,
warmup_steps=100,
num_train_epochs=args.num_epochs,
learning_rate=args.learning_rate,
logging_steps=10,
logging_first_step=True,
fp16=True, # not torch.cuda.is_bf16_supported()
bf16=False, # torch.cuda.is_bf16_supported()
eval_steps=100,
save_steps=200,
save_total_limit=20,
max_grad_norm=1.0,
output_dir=args.output_dir,
optim="paged_adamw_8bit",
evaluation_strategy="steps",
save_strategy="steps",
report_to="none",
run_name=args.output_dir.split('/')[-1],
metric_for_best_model="{}_loss".format(args.data_path),
),
data_collator=transformers.DataCollatorForSeq2Seq(
tokenizer, pad_to_multiple_of=8, return_tensors="pt", padding=True
),
)
model.config.use_cache = False # silence the warnings. Please re-enable for inference!
trainer.train()
if args.save_model:
output_lora_dir = 'LLM_pretrained/pruned_model/finetuned_qlora_alpaca_{}_{}{}/'.format(args.base_model, args.pr_method, args.remove_layer)
if not os.path.exists(output_lora_dir):
os.mkdir(output_lora_dir)
model.save_pretrained(output_lora_dir)
if __name__ == "__main__":
parser = argparse.ArgumentParser(description='Tuning Pruned LLM')
# Model Type&Path
parser.add_argument('--base_model', type=str, default="llama3-8b", help='base model name')
parser.add_argument('--prune_model_path', type=str, help='prune model name')
parser.add_argument('--data_path', type=str, default="/public/MountData/dataset/alpaca-cleaned/", help='data path')
parser.add_argument('--cache_dataset', action="store_true", default=False)
parser.add_argument('--extra_val_dataset', type=str, default=None, help='validation datasets. Split with ","')
parser.add_argument('--remove_layer', type=int, default=16, help='batch size')
parser.add_argument('--output_dir', type=str,
default="LLM_pretrained/pruned_model/finetuned_lora_alpaca-llama/",
help='output directory')
# Training Hyperparameters
parser.add_argument('--batch_size', type=int, default=64, help='batch size')
parser.add_argument('--micro_batch_size', type=int, default=4, help='micro batch size')
parser.add_argument('--num_epochs', type=int, default=2, help='number of epochs') # 2
parser.add_argument('--learning_rate', type=float, default=1e-5, help='learning rate')
parser.add_argument('--cutoff_len', type=int, default=256, help='cutoff length')
parser.add_argument('--val_set_size', type=int, default=2000, help='validation set size')
parser.add_argument('--prompt_template_name', type=str, default="alpaca",
help="The prompt template to use, will default to alpaca.")
parser.add_argument('--no_instruction', action='store_true', default=False,
help="Whether to use the instruction template or not.")
# Lora Configuration
parser.add_argument('--lora_r', type=int, default=8, help='lora r')
parser.add_argument('--lora_alpha', type=int, default=16, help='lora alpha')
parser.add_argument('--lora_dropout', type=float, default=0.05, help='lora dropout')
parser.add_argument('--lora_target_modules', type=str,
default="q_proj,k_proj,v_proj,o_proj,gate_proj,down_proj,up_proj", help='lora target modules')
# llm hyperparameters
parser.add_argument('--train_on_inputs', default=False, action="store_true",
help='Train on inputs. If False, masks out inputs in loss')
parser.add_argument('--add_eos_token', default=False, action="store_true")
parser.add_argument('--group_by_length', default=False, action="store_true",
help="faster, but produces an odd training loss curve")
# general argument
parser.add_argument('--device', type=str, default="cuda", help='device')
parser.add_argument('--test_before_train', action='store_true', help='whether test before train')
parser.add_argument('--eval_device', type=str, default="cuda", help='eval device')
parser.add_argument('--test_after_train', action='store_true', help='whether test after train')
parser.add_argument('--seed', type=int, default=42, help='seed')
parser.add_argument('--save_model', action='store_true', help='if save model')
parser.add_argument('--pr_method', type=str, default="ppl", help='device')
# ddp
parser.add_argument('--local_rank', type=int, default=-1)
args = parser.parse_args()
torch_version = int(torch.__version__.split('.')[1])
args.torch_version = torch_version
## CUDA_VISIBLE_DEVICES=0 TRANSFORMERS_OFFLINE=1 python finetune_pruned_qlora.py --base_model Gemma2-2b --save_model --pr_method random --prune_model_path
main(args)