-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathget_rep.py
139 lines (119 loc) · 5.4 KB
/
get_rep.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
import argparse
import torch
import sys
from peft import PeftModel
from transformers import AutoTokenizer, AutoModel, AutoModelForCausalLM
from utils.CKA import linear_CKA
from utils.get_calibration_samples import get_examples
def get_hidden_states(model, inputs):
hidden_states = []
def hook(module, input, output):
hidden_states.append(output)
hooks = []
if args.model == 'ChatGLM6B':
for layer in model.transformer.layers: # all
hook_handle = layer.register_forward_hook(hook)
hooks.append(hook_handle)
else:
for layer in model.model.layers: # all
hook_handle = layer.register_forward_hook(hook)
hooks.append(hook_handle)
with torch.no_grad():
if args.model == 'ChatGLM6B':
_ = model.generate(**inputs, max_new_tokens=64, repetition_penalty=1.1)
else:
_ = model(inputs, labels=inputs)
for hook_handle in hooks:
hook_handle.remove()
return hidden_states
def main(args):
if args.model == 'llama2_7b':
tokenizer = AutoTokenizer.from_pretrained(
'/LLAMA2_7B/', use_fast=False, trust_remote_code=True
)
model = AutoModel.from_pretrained(
'/LLAMA2_7B/', trust_remote_code=True,
low_cpu_mem_usage=True if args.torch_version >=1.9 else False
)
elif args.model == 'BaiChuan7B':
tokenizer = AutoTokenizer.from_pretrained(
'/Baichuan_7B/', use_fast=False, trust_remote_code=True
)
model = AutoModel.from_pretrained(
'/Baichuan_7B/', trust_remote_code=True,
low_cpu_mem_usage=True if args.torch_version >= 1.9 else False
)
elif args.model == 'llama3-8b':
tokenizer = AutoTokenizer.from_pretrained(
'/LLAMA3_8B/',
use_fast=False, trust_remote_code=True
)
model = AutoModelForCausalLM.from_pretrained(
'/LLAMA3_8B/',
trust_remote_code=True, use_cache=False
)
elif args.model == 'Vicuna_7B':
tokenizer = AutoTokenizer.from_pretrained(
'/Vicuna_7B_V1.5/models--lmsys--vicuna-7b-v1.5/',
use_fast=False, trust_remote_code=True
)
model = AutoModelForCausalLM.from_pretrained(
'/Vicuna_7B_V1.5/models--lmsys--vicuna-7b-v1.5/',
trust_remote_code=True, use_cache=False
)
elif args.model == 'Qwen1.5-7B':
tokenizer = AutoTokenizer.from_pretrained(
'/Qwen1.5-7B/models--Qwen--Qwen1.5-7B/',
use_fast=False, trust_remote_code=True
)
model = AutoModelForCausalLM.from_pretrained(
'/Qwen1.5-7B/models--Qwen--Qwen1.5-7B/',
trust_remote_code=True, use_cache=False
)
elif args.model == 'ChatGLM6B': # have some problem
tokenizer = AutoTokenizer.from_pretrained(
'/chatglm6b/', use_fast=False, trust_remote_code=True
)
model = AutoModel.from_pretrained("/chatglm6b/", trust_remote_code=True)
elif args.model == 'lora':
tokenizer = AutoTokenizer.from_pretrained(
args.model_path, use_fast=False, trust_remote_code=True
)
model = AutoModelForCausalLM.from_pretrained(args.model_path,
trust_remote_code=True, device_map='auto'
)
lora_model = PeftModel.from_pretrained(
model,
args.lora_path,
torch_dtype=torch.float16,
)
model = lora_model.merge_and_unload()
else:
print('Not support {}!'.format(args.model))
sys.exit(0)
model.to(args.device)
print(model)
prompts = get_examples('bookcorpus', tokenizer, 3 * args.num_examples, seq_len=128).to(args.device)
print("Start Backwarding in iterative steps...")
for kk in range(3):
example_prompts = prompts[kk * args.num_examples:(kk + 1) * args.num_examples, :]
print(example_prompts.shape)
hidden_states = get_hidden_states(model, example_prompts)
b, h, w = hidden_states[0][0].shape[0], hidden_states[0][0].shape[1], hidden_states[0][0].shape[2]
print(hidden_states[0][0].shape) # torch.Size([batch, 64, 4096])
sim_matrix = torch.zeros((len(hidden_states), len(hidden_states)))
for i in range(len(hidden_states)):
for j in range(len(hidden_states)):
if i >= j:
sim_matrix[i,j] = sim_matrix[j,i] = linear_CKA(hidden_states[i][0].view(b, h * w).cuda(), hidden_states[j][0].view(b, h * w).cuda())
torch.save(sim_matrix, '/public/SBF/img/sim_matrix_{}_id{}_batch{}.pth'.format(args.model, kk, args.num_examples))
if __name__ == "__main__":
parser = argparse.ArgumentParser(description='Calculating Similarity')
parser.add_argument('--num_examples', type=int, default=64)
parser.add_argument('--device', type=str, default="cuda:0", help='device')
parser.add_argument('--model', type=str, default="llama3-8b", help='device')
parser.add_argument('--model_path', type=str, help='prune model name')
parser.add_argument('--lora_path', type=str, help='lora name')
args = parser.parse_args()
args.torch_version = float('.'.join(torch.__version__.split('.')[:2]))
main(args)