-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathpartial_fine-tuning.py
318 lines (270 loc) · 12.7 KB
/
partial_fine-tuning.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
'''
Refer to
https://github.com/tloen/alpaca-lora/blob/main/finetune.py
'''
import gc
import os
import random
import argparse
import numpy as np
import torch
import transformers
from datasets import load_dataset
from transformers import AutoTokenizer, AutoModelForCausalLM
from utils.prompter import Prompter, ZeroPrompter
os.environ['TF_ENABLE_ONEDNN_OPTS'] = '0'
os.environ["WANDB_DISABLED"]="true"
device = "cuda" if torch.cuda.is_available() else "cpu"
def set_random_seed(seed):
random.seed(seed)
np.random.seed(seed)
torch.manual_seed(seed)
torch.cuda.manual_seed_all(seed)
## For clearing GPU memory
def clear_gpu_memory(debug=False):
"""
Clears GPU memory on all devices and optionally provides debugging information about memory usage.
Args:
debug (bool): If True, print memory stats before and after cleanup.
"""
if debug:
print("Before cleanup:")
print(f"Allocated: {torch.cuda.memory_allocated()} bytes")
print(f"Reserved: {torch.cuda.memory_reserved()} bytes")
# Collect garbage to potentially free up memory references
gc.collect()
# Clear PyTorch's CUDA memory cache
torch.cuda.empty_cache()
if debug:
print("After cleanup:")
print(f"Allocated: {torch.cuda.memory_allocated()} bytes")
print(f"Reserved: {torch.cuda.memory_reserved()} bytes")
def main(args):
# Load Pruned Model
set_random_seed(args.seed)
gradient_accumulation_steps = args.batch_size // args.micro_batch_size
if not args.no_instruction:
prompter = Prompter(args.prompt_template_name)
else:
prompter = ZeroPrompter()
device_map = "auto"
world_size = int(os.environ.get("WORLD_SIZE", 1))
ddp = world_size != 1
if ddp:
print('using ddp...')
device_map = {"": int(os.environ.get("LOCAL_RANK") or 0)}
gradient_accumulation_steps = gradient_accumulation_steps // world_size
tokenizer = AutoTokenizer.from_pretrained(args.prune_model_path,
use_fast=False, trust_remote_code=True
)
model = AutoModelForCausalLM.from_pretrained(args.prune_model_path,
trust_remote_code=True, device_map=device_map
)
print(model)
for param in model.parameters():
param.requires_grad = False
### for lm_head and norm, not suitable for gemma
for param in model.model.norm.parameters():
param.requires_grad = True
for param in model.lm_head.parameters():
param.requires_grad = True
if args.partial_layer_name == 'last1':
for param in model.model.layers[-1].parameters():
param.requires_grad = True
elif args.partial_layer_name == 'last2':
for param in model.model.layers[-1].parameters():
param.requires_grad = True
for param in model.model.layers[-2].parameters():
param.requires_grad = True
elif args.partial_layer_name == 'last3':
for param in model.model.layers[-1].parameters():
param.requires_grad = True
for param in model.model.layers[-2].parameters():
param.requires_grad = True
for param in model.model.layers[-3].parameters():
param.requires_grad = True
elif args.partial_layer_name == 'norm_lmhead':
print('just finetune norm and lm_head')
for name, param in model.named_parameters():
print(f"Layer: {name}, requires_grad: {param.requires_grad}")
tokenizer.pad_token_id = (0)
tokenizer.padding_side = "left"
def tokenize(prompt, add_eos_token=True):
result = tokenizer(
prompt,
truncation=True,
max_length=args.cutoff_len,
padding=False,
return_tensors=None,
)
if (
result["input_ids"][-1] != tokenizer.eos_token_id
and len(result["input_ids"]) < args.cutoff_len
and add_eos_token
):
result["input_ids"].append(tokenizer.eos_token_id)
result["attention_mask"].append(1)
result["labels"] = result["input_ids"].copy()
return result
def generate_and_tokenize_prompt(data_point):
if 'lamini' in args.data_path.lower():
full_prompt = prompter.generate_prompt(
data_point["instruction"],
None,
data_point["response"],
)
elif 'alpaca' in args.data_path.lower():
# print('using alpaca...')
full_prompt = prompter.generate_prompt(
data_point["instruction"],
data_point["input"],
data_point["output"],
)
else:
raise NotImplementedError
tokenized_full_prompt = tokenize(full_prompt)
if not args.train_on_inputs:
user_prompt = prompter.generate_prompt(
data_point["instruction"], data_point["input"] if 'input' in data_point.keys() else None,
)
tokenized_user_prompt = tokenize(
user_prompt, add_eos_token=args.add_eos_token
)
user_prompt_len = len(tokenized_user_prompt["input_ids"])
if args.add_eos_token:
user_prompt_len -= 1
tokenized_full_prompt["labels"] = [
-100
] * user_prompt_len + tokenized_full_prompt["labels"][
user_prompt_len:
] # could be sped up, probably
return tokenized_full_prompt
def split_and_tokenizer(test_data, tokenizer, seq_len, field_name):
test_ids = tokenizer("\n\n".join(test_data[field_name]), return_tensors='pt').input_ids[0]
nsamples = test_ids.numel() // seq_len
test_set = []
for i in range(nsamples):
batch = test_ids[(i * seq_len):((i + 1) * seq_len)]
test_set.append({
'input_ids': batch,
'labels': batch
})
return test_set
clear_gpu_memory()
# Load Train Dataset
data = load_dataset(args.data_path)
if args.val_set_size > 0:
train_val = data["train"].train_test_split(
test_size=args.val_set_size, shuffle=True, seed=42
)
train_data = (
train_val["train"].shuffle().map(generate_and_tokenize_prompt)
)
val_data = {
args.data_path: train_val["test"].shuffle().map(generate_and_tokenize_prompt),
}
else:
train_data = data["train"].shuffle().map(generate_and_tokenize_prompt)
val_data = None
# Load Extra Validation Dataset
if args.extra_val_dataset:
from evaluate.ppl_dataset import get_wikitext2, get_ptb
seq_len = 128 # too small, ori 128
for extra_dataset in args.extra_val_dataset.split(','):
if 'wikitext2' in extra_dataset:
_, test_data = get_wikitext2(seq_len, None)
test_data = split_and_tokenizer(test_data, tokenizer, seq_len, field_name='text')
if 'ptb' in extra_dataset:
_, test_data = get_ptb(seq_len, None)
test_data = split_and_tokenizer(test_data, tokenizer, seq_len, field_name='sentence')
val_data[extra_dataset] = test_data
if not ddp and torch.cuda.device_count() > 1:
# keeps Trainer from trying its own DataParallelism when more than 1 gpu is available
model.is_parallelizable = True
model.model_parallel = True
trainer = transformers.Trainer(
model=model,
train_dataset=train_data,
eval_dataset=val_data,
args=transformers.TrainingArguments(
per_device_train_batch_size=args.micro_batch_size,
gradient_accumulation_steps=gradient_accumulation_steps,
warmup_steps=100, # 100 ori
num_train_epochs=args.num_epochs,
learning_rate=args.learning_rate,
fp16=True, # not torch.cuda.is_bf16_supported()
bf16=False, # torch.cuda.is_bf16_supported()
logging_steps=10,
logging_first_step=True,
optim="adamw_torch",
evaluation_strategy="steps",
save_strategy="steps",
eval_steps=100,
save_steps=200,
output_dir=args.output_dir,
save_total_limit=20,
max_grad_norm=1.0,
report_to="none",
load_best_model_at_end=True,
# lr_scheduler_type="linear",
ddp_find_unused_parameters=False if ddp else None,
group_by_length=args.group_by_length,
run_name=args.output_dir.split('/')[-1],
metric_for_best_model="{}_loss".format(args.data_path),
),
data_collator=transformers.DataCollatorForSeq2Seq(
tokenizer, pad_to_multiple_of=8, return_tensors="pt", padding=True
),
)
model.config.use_cache = False
trainer.train()
if args.save_model:
output_lora_dir = 'LLM_pretrained/pruned_model/partial_tuing_taylor8/partial_tuing_{}_alpaca_{}/'.format(args.base_model, args.partial_layer_name)
if not os.path.exists(output_lora_dir):
os.mkdir(output_lora_dir)
model.save_pretrained(output_lora_dir)
tokenizer.save_pretrained(output_lora_dir)
clear_gpu_memory()
if __name__ == "__main__":
parser = argparse.ArgumentParser(description='Tuning Pruned LLM')
# Model Type&Path
parser.add_argument('--base_model', type=str, default="llama3-8b", help='base model name')
parser.add_argument('--prune_model_path', type=str, help='prune model name')
parser.add_argument('--data_path', type=str, default="/public/MountData/dataset/alpaca-cleaned/", help='data path')
parser.add_argument('--cache_dataset', action="store_true", default=False)
parser.add_argument('--extra_val_dataset', type=str, default=None, help='validation datasets. Split with ","')
parser.add_argument('--output_dir', type=str,
default="LLM_pretrained/pruned_model/lora-alpaca-llama/",
help='output directory')
# Training Hyperparameters
parser.add_argument('--batch_size', type=int, default=64, help='batch size')
parser.add_argument('--micro_batch_size', type=int, default=4, help='micro batch size')
parser.add_argument('--num_epochs', type=int, default=2, help='number of epochs') # 2 or 5
parser.add_argument('--learning_rate', type=float, default=1e-5, help='learning rate')
parser.add_argument('--cutoff_len', type=int, default=256, help='cutoff length')
parser.add_argument('--val_set_size', type=int, default=2000, help='validation set size')
parser.add_argument('--prompt_template_name', type=str, default="alpaca",
help="The prompt template to use, will default to alpaca.")
parser.add_argument('--no_instruction', action='store_true', default=False,
help="Whether to use the instruction template or not.")
parser.add_argument('--partial_layer_name', type=str, default="last1", help='base model name')
# llm hyperparameters
parser.add_argument('--train_on_inputs', default=False, action="store_true",
help='Train on inputs. If False, masks out inputs in loss')
parser.add_argument('--add_eos_token', default=False, action="store_true")
parser.add_argument('--group_by_length', default=False, action="store_true",
help="faster, but produces an odd training loss curve")
# general argument
parser.add_argument('--device', type=str, default="cuda", help='device')
parser.add_argument('--test_before_train', action='store_true', help='whether test before train')
parser.add_argument('--eval_device', type=str, default="cuda", help='eval device')
parser.add_argument('--test_after_train', action='store_true', help='whether test after train')
parser.add_argument('--seed', type=int, default=42, help='seed')
parser.add_argument('--save_model', action='store_true', help='if save model')
# ddp
parser.add_argument('--local_rank', type=int, default=-1)
args = parser.parse_args()
torch_version = int(torch.__version__.split('.')[1])
args.torch_version = torch_version
## CUDA_VISIBLE_DEVICES=2 TRANSFORMERS_OFFLINE=1 python partial_fine-tuning.py --base_model Qwen1.5-7B --save_model --prune_model_path ~ --partial_layer_name ~
main(args)