-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathpruning_method.py
617 lines (524 loc) · 28.7 KB
/
pruning_method.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
'''
Refer to
https://github.com/tloen/alpaca-lora/blob/main/finetune.py
'''
import csv
import gc
import os
import random
import sys
from torch import nn
from utils.get_calibration_samples import get_examples
sys.path.append('/public/ly/SBF/evaluate/')
import argparse
import numpy as np
import torch
from tqdm import tqdm
from transformers import AutoTokenizer, AutoModelForCausalLM, AutoConfig, LlamaForCausalLM
from ppldataset import get_wikitext2, get_ptb, process_data
from utils.eval import eval_zero_shot
os.environ['TF_ENABLE_ONEDNN_OPTS'] = '0'
device = "cuda" if torch.cuda.is_available() else "cpu"
def set_random_seed(seed):
random.seed(seed)
np.random.seed(seed)
torch.manual_seed(seed)
torch.cuda.manual_seed_all(seed)
def save_list_to_txt(my_list, file_path):
try:
# Open the file at the specified path in write mode
with open(file_path, 'w') as file:
# Iterate over each item in the list
for item in my_list:
# Write each item to the file, followed by a newline character
file.write(f"{item}\n")
print(f"List has been saved to {file_path}.")
except Exception as e:
print(f"An error occurred: {e}")
def split_and_tokenizer(test_data, tokenizer, seq_len, field_name):
test_ids = tokenizer("\n\n".join(test_data[field_name]), return_tensors='pt').input_ids[0]
nsamples = test_ids.numel() // seq_len
test_set = []
for i in range(nsamples):
batch = test_ids[(i * seq_len):((i + 1) * seq_len)]
test_set.append({
'input_ids': batch,
'labels': batch
})
return test_set
def PPLMetric(model, tokenizer, datasets, seq_len=128, batch_size=4, device="cuda"):
metric = {}
for dataset in datasets:
_, test_loader = get_loaders(dataset, tokenizer, seq_len=seq_len, batch_size = batch_size)
ppl = llama_eval(model, test_loader, device)
metric[dataset] = ppl
print(metric)
return metric
def get_loaders(name, tokenizer, seq_len=2048, batch_size = 8):
if 'wikitext2' in name:
train_data, test_data = get_wikitext2(seq_len, tokenizer)
test_dataset = process_data(test_data, tokenizer, seq_len, 'text')
if 'ptb' in name:
train_data, test_data = get_ptb(seq_len, tokenizer)
test_dataset = process_data(test_data, tokenizer, seq_len, 'sentence')
test_loader = torch.utils.data.DataLoader(test_dataset, batch_size=batch_size, shuffle=False)
return train_data, test_loader
@torch.no_grad()
def llama_eval(model, test_lodaer, device):
nlls = []
n_samples = 0
for batch in tqdm(test_lodaer):
batch = batch.to(device)
output = model(batch)
lm_logits = output.logits
shift_logits = lm_logits[:, :-1, :].contiguous()
shift_labels = batch[:, 1:].contiguous()
loss_fct = torch.nn.CrossEntropyLoss(reduction="none")
loss = loss_fct(shift_logits.reshape(-1, shift_logits.size(-1)), shift_labels.view(-1))
nlls.append(loss)
# print(torch.cat(nlls, dim=-1).mean())
ppl = np.exp(torch.cat(nlls, dim=-1).mean().item())
return ppl.item()
def main(args):
# Load Pruned Model
set_random_seed(args.seed)
device_map = "auto"
world_size = int(os.environ.get("WORLD_SIZE", 1))
ddp = world_size != 1
if ddp:
print('using ddp...')
device_map = {"": int(os.environ.get("LOCAL_RANK") or 0)}
if args.base_model == 'llama3-8b':
tokenizer = AutoTokenizer.from_pretrained(
'LLAMA3_8B/',
use_fast=False, trust_remote_code=True
)
model = AutoModelForCausalLM.from_pretrained(
'LLAMA3_8B/',
trust_remote_code=True, use_cache=False, device_map=device_map, low_cpu_mem_usage=True if args.torch_version >=1.9 else False
)
config_path = 'LLAMA3_8B/'
elif args.base_model == 'Vicuna_7B':
tokenizer = AutoTokenizer.from_pretrained(
'Vicuna_7B_V1.5/models--lmsys--vicuna-7b-v1.5/',
use_fast=False, trust_remote_code=True
)
model = AutoModelForCausalLM.from_pretrained(
'Vicuna_7B_V1.5/models--lmsys--vicuna-7b-v1.5/',
trust_remote_code=True, device_map=device_map, use_cache=False,
)
config_path = 'Vicuna_7B_V1.5/models--lmsys--vicuna-7b-v1.5/'
elif args.base_model == 'Qwen1.5-7B':
tokenizer = AutoTokenizer.from_pretrained(
'Qwen1.5-7B/models--Qwen--Qwen1.5-7B/',
use_fast=False, trust_remote_code=True # delete this for BI, add torch_dtype=torch.bfloat16 for taylor
)
model = AutoModelForCausalLM.from_pretrained(
'Qwen1.5-7B/models--Qwen--Qwen1.5-7B/',
trust_remote_code=True, device_map=device_map, use_cache=False
)
config_path = 'Qwen1.5-7B/models--Qwen--Qwen1.5-7B/'
elif args.base_model == 'Gemma2-2b':
tokenizer = AutoTokenizer.from_pretrained(
'gemma-2-2b-it/',
use_fast=False, trust_remote_code=True
)
model = AutoModelForCausalLM.from_pretrained(
'gemma-2-2b-it/',
trust_remote_code=True, device_map=device_map, use_cache=False
)
config_path = 'gemma-2-2b-it/'
elif args.base_model == 'Llama-3.1-8B-Instruct': # NEED TO CHECK
tokenizer = AutoTokenizer.from_pretrained(
'Meta-Llama-3.1-8B-Instruct/models--meta-llama--Meta-Llama-3.1-8B-Instruct/snapshots/8c22764a7e3675c50d4c7c9a4edb474456022b16/',
use_fast=False, trust_remote_code=True
)
model = AutoModelForCausalLM.from_pretrained(
'Meta-Llama-3.1-8B-Instruct/models--meta-llama--Meta-Llama-3.1-8B-Instruct/snapshots/8c22764a7e3675c50d4c7c9a4edb474456022b16/',
torch_dtype=torch.bfloat16, # delete this for BI, maintain for taylor
device_map=device_map,
use_cache=False,
cache_dir='Meta-Llama-3.1-8B-Instruct/models--meta-llama--Meta-Llama-3.1-8B-Instruct/snapshots/8c22764a7e3675c50d4c7c9a4edb474456022b16/'
)
config_path = 'Meta-Llama-3.1-8B-Instruct/models--meta-llama--Meta-Llama-3.1-8B-Instruct/snapshots/8c22764a7e3675c50d4c7c9a4edb474456022b16/'
else:
sys.exit(0)
print(model)
def count_parameters(model):
# Sum up all parameters
return sum(p.numel() for p in model.parameters())
total_params = count_parameters(model)
print(f"Total number of parameters before pruning: {total_params}")
if not os.path.exists(args.output_dir + '{}/{}/'.format(args.pruning_method, args.base_model)):
os.mkdir(args.output_dir + '{}/{}/'.format(args.pruning_method, args.base_model))
if args.pruning_method == 'magnitude_l1': # ref to Pruning filters for efficient convnets
if args.norm_power != 1:
print('Norm_power should be set to 1')
sys.exit(0)
result_csv_weight = os.path.join(args.output_dir+'{}/{}/'.format(args.pruning_method, args.base_model), "weight_score.csv")
result_csv_block = os.path.join(args.output_dir+'{}/{}/'.format(args.pruning_method, args.base_model), "block_score_all.csv")
result_csv_block_detail = os.path.join(args.output_dir+'{}/{}/'.format(args.pruning_method, args.base_model), "block_score_detail.csv")
result_csv_block_sort = os.path.join(args.output_dir+'{}/{}/'.format(args.pruning_method, args.base_model), "block_score_sorted.csv")
block_order_path = os.path.join(args.output_dir+'{}/{}/'.format(args.pruning_method, args.base_model), "block_order.csv")
# Compute scores of weight matrices -> Collec them
block_info = {}
with open(result_csv_weight, "w") as logfile:
logwriter = csv.writer(logfile, delimiter=",")
logwriter.writerow(["weight_name", "weight_score"])
for k, param in model.named_parameters():
if param.requires_grad and "weight" in k and "embed_tokens" not in k:
block_idx = ".".join(k.split(".")[:3]) # 'model.layers.i'
if "proj" in k or "lm_head" in k: # output_dim x input_dim
weight_imp = (
param.data.clone().float().abs().pow(args.norm_power).sum(1)
) # [output_dim]
elif "norm" in k: # [output_dim]
weight_imp = param.data.clone().float().abs().pow(args.norm_power)
if args.weight_reduction == "sum":
weight_imp = weight_imp.sum(dim=0)
elif args.weight_reduction == "mean":
weight_imp = weight_imp.mean(dim=0)
elif args.weight_reduction == "max":
weight_imp = weight_imp.max(dim=0)[0]
elif args.weight_reduction == "prod":
weight_imp = torch.prod(weight_imp, dim=0)
else:
raise NotImplementedError
weight_imp = weight_imp.item()
logwriter.writerow([k, weight_imp])
print([k, weight_imp])
if block_idx not in block_info.keys():
block_info[block_idx] = [weight_imp]
else:
block_info[block_idx].append(weight_imp)
# Compute block-level importance
block_info_summary = {}
with open(result_csv_block, "w") as logfile, open(
result_csv_block_detail, "w"
) as logfile_detail:
logwriter = csv.writer(logfile, delimiter=",")
logwriter.writerow(["block_name", "block_score"])
logwriter_detail = csv.writer(logfile_detail, delimiter=",")
logwriter_detail.writerow(["block_name", "all_weight_scores"])
for k, v in block_info.items():
print(k, v)
logwriter_detail.writerow([k] + v)
block_imp = torch.tensor(v)
if args.block_reduction == "sum":
block_imp = block_imp.sum(dim=0)
elif args.block_reduction == "mean":
block_imp = block_imp.mean(dim=0)
elif args.block_reduction == "max":
block_imp = block_imp.max(dim=0)[0]
elif args.block_reduction == "prod":
block_imp = torch.prod(block_imp, dim=0)
else:
raise NotImplementedError
block_imp = block_imp.item()
logwriter.writerow([k, block_imp])
block_info_summary[k] = block_imp
for k in ["model.norm.weight", "lm_head.weight"]:
if k in block_info_summary:
del block_info_summary[k]
sorted_items = sorted(block_info_summary.items(), key=lambda x: x[1])
block_order = []
with open(result_csv_block_sort, "w") as logfile:
logwriter = csv.writer(logfile, delimiter=",")
logwriter.writerow(["rank", "block_name", "block_score", "block_index"])
for rank, (key, value) in enumerate(sorted_items, start=1):
logwriter.writerow([rank, key, value, key.split(".")[-1]])
print([rank, key, value, key.split(".")[-1]])
block_order.append(int(key.split(".")[-1]))
with open(block_order_path, "w") as logfile_order:
logwriter_order = csv.writer(logfile_order, delimiter=",")
logwriter_order.writerow(block_order)
print(f"=== block order removed: {block_order_path}")
print(block_order)
print(f"len: {len(block_order)}")
elif args.pruning_method == 'magnitude_l2': # ref to Pruning filters for efficient convnets
if args.norm_power != 2:
print('Norm_power should be set to 2')
sys.exit(0)
result_csv_weight = os.path.join(args.output_dir+'{}/{}/'.format(args.pruning_method, args.base_model), "weight_score.csv")
result_csv_block = os.path.join(args.output_dir+'{}/{}/'.format(args.pruning_method, args.base_model), "block_score_all.csv")
result_csv_block_detail = os.path.join(args.output_dir+'{}/{}/'.format(args.pruning_method, args.base_model), "block_score_detail.csv")
result_csv_block_sort = os.path.join(args.output_dir+'{}/{}/'.format(args.pruning_method, args.base_model), "block_score_sorted.csv")
block_order_path = os.path.join(args.output_dir+'{}/{}/'.format(args.pruning_method, args.base_model), "block_order.csv")
# Compute scores of weight matrices -> Collec them
block_info = {}
with open(result_csv_weight, "w") as logfile:
logwriter = csv.writer(logfile, delimiter=",")
logwriter.writerow(["weight_name", "weight_score"])
for k, param in model.named_parameters():
if param.requires_grad and "weight" in k and "embed_tokens" not in k:
block_idx = ".".join(k.split(".")[:3]) # 'model.layers.i'
if "proj" in k or "lm_head" in k: # output_dim x input_dim
weight_imp = (
param.data.clone().float().abs().pow(args.norm_power).sum(1)
) # [output_dim]
elif "norm" in k: # [output_dim]
weight_imp = param.data.clone().float().abs().pow(args.norm_power)
if args.weight_reduction == "sum":
weight_imp = weight_imp.sum(dim=0)
elif args.weight_reduction == "mean":
weight_imp = weight_imp.mean(dim=0)
elif args.weight_reduction == "max":
weight_imp = weight_imp.max(dim=0)[0]
elif args.weight_reduction == "prod":
weight_imp = torch.prod(weight_imp, dim=0)
else:
raise NotImplementedError
weight_imp = weight_imp.item()
logwriter.writerow([k, weight_imp])
print([k, weight_imp])
if block_idx not in block_info.keys():
block_info[block_idx] = [weight_imp]
else:
block_info[block_idx].append(weight_imp)
# Compute block-level importance
block_info_summary = {}
with open(result_csv_block, "w") as logfile, open(
result_csv_block_detail, "w"
) as logfile_detail:
logwriter = csv.writer(logfile, delimiter=",")
logwriter.writerow(["block_name", "block_score"])
logwriter_detail = csv.writer(logfile_detail, delimiter=",")
logwriter_detail.writerow(["block_name", "all_weight_scores"])
for k, v in block_info.items():
print(k, v)
logwriter_detail.writerow([k] + v)
block_imp = torch.tensor(v)
if args.block_reduction == "sum":
block_imp = block_imp.sum(dim=0)
elif args.block_reduction == "mean":
block_imp = block_imp.mean(dim=0)
elif args.block_reduction == "max":
block_imp = block_imp.max(dim=0)[0]
elif args.block_reduction == "prod":
block_imp = torch.prod(block_imp, dim=0)
else:
raise NotImplementedError
block_imp = block_imp.item()
logwriter.writerow([k, block_imp])
block_info_summary[k] = block_imp
for k in ["model.norm.weight", "lm_head.weight"]:
if k in block_info_summary:
del block_info_summary[k]
sorted_items = sorted(block_info_summary.items(), key=lambda x: x[1])
block_order = []
with open(result_csv_block_sort, "w") as logfile:
logwriter = csv.writer(logfile, delimiter=",")
logwriter.writerow(["rank", "block_name", "block_score", "block_index"])
for rank, (key, value) in enumerate(sorted_items, start=1):
logwriter.writerow([rank, key, value, key.split(".")[-1]])
print([rank, key, value, key.split(".")[-1]])
block_order.append(int(key.split(".")[-1]))
with open(block_order_path, "w") as logfile_order:
logwriter_order = csv.writer(logfile_order, delimiter=",")
logwriter_order.writerow(block_order)
print(f"=== block order removed: {block_order_path}")
print(block_order)
print(f"len: {len(block_order)}")
elif args.pruning_method == 'ppl': # ref to Shortened LLaMA: Depth Pruning for Large Language Models with Comparison of Retraining Methods
# model.half()
ppl = PPLMetric(model.cuda(), tokenizer, ['wikitext2'], 128, device=args.device)
print("PPL before pruning: {}".format(ppl))
def remove_elements(lst, elements_to_remove):
return list(filter(lambda element: element not in elements_to_remove, lst))
ppl_list = []
layer_num = [i for i in range(32)]
for i in range(len(layer_num)):
remained = remove_elements(layer_num, [i])
print('remained: {}'.format(remained))
new_config = AutoConfig.from_pretrained(config_path, num_hidden_layers=len(remained), trust_remote_code=True)
new_model = AutoModelForCausalLM.from_config(new_config)
# 复制参数
new_model.model.embed_tokens.load_state_dict(model.model.embed_tokens.state_dict())
new_model.model.norm.load_state_dict(model.model.norm.state_dict())
new_model.lm_head.load_state_dict(model.lm_head.state_dict())
for i in range(len(remained)):
layer_state_dict = model.model.layers[remained[i]].state_dict()
new_model.model.layers[i].load_state_dict(layer_state_dict)
total_params = count_parameters(new_model)
print(f"Total number of parameters after pruning: {total_params}")
ppl = PPLMetric(new_model.to(args.device), tokenizer, ['wikitext2'], 128, device=args.device, batch_size=1)
del new_model
print("PPL after pruning: {}".format(ppl))
ppl_list.append(ppl)
torch.save(ppl_list, '/public/ly/SBF/pruning_method/ppl/wikitext2_{}.pth'.format(args.base_model))
elif args.pruning_method == 'taylor': # ref to Shortened LLaMA: Depth Pruning for Large Language Models with Comparison of Retraining Methods
# model.half()
model = model.cuda()
result_csv_weight = os.path.join(args.output_dir+'{}/{}/'.format(args.pruning_method, args.base_model), "weight_score.csv")
result_csv_block = os.path.join(args.output_dir+'{}/{}/'.format(args.pruning_method, args.base_model), "block_score_all.csv")
result_csv_block_detail = os.path.join(args.output_dir+'{}/{}/'.format(args.pruning_method, args.base_model), "block_score_detail.csv")
result_csv_block_sort = os.path.join(args.output_dir+'{}/{}/'.format(args.pruning_method, args.base_model), "block_score_sorted.csv")
block_order_path = os.path.join(args.output_dir+'{}/{}/'.format(args.pruning_method, args.base_model), "block_order.csv")
print("Do forward to collect gradient information")
salience_dict = {}
example_prompts = get_examples('bookcorpus', tokenizer, 10, seq_len=128).to(args.device)
for i in range(0, example_prompts.size(0), args.batch_size):
example_prompts_tmp = example_prompts[i: i + args.batch_size]
loss = model(example_prompts_tmp, labels=example_prompts_tmp).loss
loss.backward()
for k, param in model.named_parameters():
if param.requires_grad and "weight" in k and "embed_tokens" not in k:
salience = param * param.grad
salience = salience.data.clone().float()
if k not in salience_dict.keys():
salience_dict[k] = salience
else:
salience_dict[k] += salience
model.zero_grad()
# Compute scores of weight matrices -> Collec them
block_info = {}
with open(result_csv_weight, "w") as logfile:
logwriter = csv.writer(logfile, delimiter=",")
logwriter.writerow(["weight_name", "weight_score"])
for k, param in model.named_parameters():
if param.requires_grad and "weight" in k and "embed_tokens" not in k:
block_idx = ".".join(k.split(".")[:3]) # 'model.layers.i'
if "proj" in k or "lm_head" in k: # output_dim x input_dim
weight_imp = (
salience_dict[k].abs().pow(args.norm_power).sum(1)
) # [output_dim]
elif "norm" in k: # [output_dim]
weight_imp = salience_dict[k].abs().pow(args.norm_power)
if args.weight_reduction == "sum":
weight_imp = weight_imp.sum(dim=0)
elif args.weight_reduction == "mean":
weight_imp = weight_imp.mean(dim=0)
elif args.weight_reduction == "max":
weight_imp = weight_imp.max(dim=0)[0]
elif args.weight_reduction == "prod":
weight_imp = torch.prod(weight_imp, dim=0)
else:
raise NotImplementedError
weight_imp = weight_imp.item()
logwriter.writerow([k, weight_imp])
print([k, weight_imp])
if block_idx not in block_info.keys():
block_info[block_idx] = [weight_imp]
else:
block_info[block_idx].append(weight_imp)
# Compute block-level importance
block_info_summary = {}
with open(result_csv_block, "w") as logfile, open(
result_csv_block_detail, "w"
) as logfile_detail:
logwriter = csv.writer(logfile, delimiter=",")
logwriter.writerow(["block_name", "block_score"])
logwriter_detail = csv.writer(logfile_detail, delimiter=",")
logwriter_detail.writerow(["block_name", "all_weight_scores"])
for k, v in block_info.items():
print(k, v)
logwriter_detail.writerow([k] + v)
block_imp = torch.tensor(v)
if args.block_reduction == "sum":
block_imp = block_imp.sum(dim=0)
elif args.block_reduction == "mean":
block_imp = block_imp.mean(dim=0)
elif args.block_reduction == "max":
block_imp = block_imp.max(dim=0)[0]
elif args.block_reduction == "prod":
block_imp = torch.prod(block_imp, dim=0)
else:
raise NotImplementedError
block_imp = block_imp.item()
logwriter.writerow([k, block_imp])
block_info_summary[k] = block_imp
for k in ["model.norm.weight", "lm_head.weight"]:
if k in block_info_summary:
del block_info_summary[k]
sorted_items = sorted(block_info_summary.items(), key=lambda x: x[1])
block_order = []
with open(result_csv_block_sort, "w") as logfile:
logwriter = csv.writer(logfile, delimiter=",")
logwriter.writerow(["rank", "block_name", "block_score", "block_index"])
for rank, (key, value) in enumerate(sorted_items, start=1):
logwriter.writerow([rank, key, value, key.split(".")[-1]])
print([rank, key, value, key.split(".")[-1]])
block_order.append(int(key.split(".")[-1]))
with open(block_order_path, "w") as logfile_order:
logwriter_order = csv.writer(logfile_order, delimiter=",")
logwriter_order.writerow(block_order)
print(f"=== block order removed: {block_order_path}")
print(block_order)
print(f"len: {len(block_order)}")
elif args.pruning_method == 'BI': # ref to ShortGPT: Layers in Large Language Models are More Redundant Than You Expect
# model.half() # will result in NAN maybe add lm_head feat
if not os.path.exists(args.output_dir+'{}/{}/'.format(args.pruning_method, args.base_model)):
os.mkdir(args.output_dir+'{}/{}/'.format(args.pruning_method, args.base_model))
def calculate_layer_importance(model, inputs):
# Get all intermediate outputs
layer_inputs = []
# Hook to capture input to each layer
def hook(module, input, output):
layer_inputs.append(input[0]) # Save input to layer
# Register hook on each layer
hooks = []
for layer in model.model.layers:
hook_handle = layer.register_forward_hook(hook)
hooks.append(hook_handle)
# Run forward pass
print(inputs.is_cuda)
model(inputs, labels=inputs)
# Calculate the importance for each layer
layer_importance = []
for i in range(len(layer_inputs) - 1):
X_i = layer_inputs[i].detach()
X_i1 = layer_inputs[i + 1].detach()
# Calculate the dot product
dot_product = torch.sum(X_i * X_i1)
# Calculate norms
norm_X_i = torch.norm(X_i)
norm_X_i1 = torch.norm(X_i1)
# Calculate importance
importance = 1 - (dot_product / (norm_X_i * norm_X_i1))
layer_importance.append(importance.item())
# Remove hooks
for hook_handle in hooks:
hook_handle.remove()
return layer_importance
example_prompts = get_examples('bookcorpus', tokenizer, 10, seq_len=128).to(args.device) # better to use 10, 5
# Calculate layer importance
importance_scores = calculate_layer_importance(model.to(args.device), example_prompts)
score_ldx = []
# Print the importance scores
for idx, score in enumerate(importance_scores):
score_ldx.append(score)
print(f"Layer {idx + 1} Importance: {score:.4f}")
print(score_ldx)
torch.save(score_ldx, '/public/ly/SBF/pruning_method/BI/bookcorpus_{}.pth'.format(args.base_model))
if __name__ == "__main__":
parser = argparse.ArgumentParser(description='Tuning Pruned LLM')
# Model Type&Path
parser.add_argument('--base_model', type=str, default="llama3-8b", help='base model name')
parser.add_argument('--output_dir', type=str,
default="/public/ly/SBF/pruning_method/",
help='output directory')
parser.add_argument('--pruning_method', type=str, default="magnitude_l1", help='pruning name')
# general argument
parser.add_argument('--device', type=str, default="cuda", help='device')
parser.add_argument('--test_before_train', action='store_true', help='whether test before train')
parser.add_argument('--test_after_train', action='store_true', help='whether test after train')
parser.add_argument('--seed', type=int, default=42, help='seed')
parser.add_argument('--save_model', action='store_true', help='if save model')
# ddp
parser.add_argument('--local_rank', type=int, default=-1)
# pruning
parser.add_argument("--norm_power", type=int, default=1, help="1 or 2 for l-p norm")
parser.add_argument(
"--weight_reduction", type=str, default="sum", help="sum, mean, max, prod"
)
parser.add_argument(
"--block_reduction", type=str, default="sum", help="sum, mean, max, prod"
)
parser.add_argument("--batch_size", type=int, default=10)
args = parser.parse_args()
torch_version = int(torch.__version__.split('.')[1])
args.torch_version = torch_version
## CUDA_VISIBLE_DEVICES=1,2 TRANSFORMERS_OFFLINE=1 python pruning_method.py --base_model llama3-8b --pruning_method magnitude_l1 --norm_power 1
## CUDA_VISIBLE_DEVICES=1,2 TRANSFORMERS_OFFLINE=1 python pruning_method.py --base_model llama3-8b --pruning_method magnitude_l2 --norm_power 2
## CUDA_VISIBLE_DEVICES=1,2 TRANSFORMERS_OFFLINE=1 python pruning_method.py --base_model llama3-8b --pruning_method ppl
main(args)